- -

Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrodinger equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrodinger equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author González, Cesáreo es_ES
dc.contributor.author Thalhammer, Mechthild es_ES
dc.date.accessioned 2022-04-05T06:55:03Z
dc.date.available 2022-04-05T06:55:03Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0272-4979 es_ES
dc.identifier.uri http://hdl.handle.net/10251/181793
dc.description.abstract [EN] This work is devoted to the derivation of a convergence result for high-order commutator-free quasi-Magnus (CFQM) exponential integrators applied to nonautonomous linear Schrodinger equations; a detailed stability and local error analysis is provided for the relevant special case where the Hamilton operator comprises the Laplacian and a regular space-time-dependent potential. In the context of nonautonomous linear ordinary differential equations, CFQM exponential integrators are composed of exponentials involving linear combinations of certain values of the associated time-dependent matrix; this approach extends to nonautonomous linear evolution equations given by unbounded operators. An inherent advantage of CFQM exponential integrators over other time integration methods such as Runge-Kutta methods or Magnus integrators is that structural properties of the underlying operator family are well preserved; this characteristic is confirmed by a theoretical analysis ensuring unconditional stability in the underlying Hilbert space and the full order of convergence under low regularity requirements on the initial state. Due to the fact that convenient tools for products of matrix exponentials such as the Baker-Campbell-Hausdorff formula involve infinite series and thus cannot be applied in connection with unbounded operators, a certain complexity in the investigation of higher-order CFQM exponential integrators for Schrodinger equations is related to an appropriate treatment of compositions of evolution operators; an effective concept for the derivation of a local error expansion relies on suitable linearisations of the evolution equations for the exact and numerical solutions, representations by the variation-ofconstants formula and Taylor series expansions of parts of the integrands, where the arising iterated commutators determine the regularity requirements on the problem data. es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad (Spain) (project MTM2016-77660-P (AEI/FEDER, UE) to S.B., F.C. and C.G.). es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof IMA Journal of Numerical Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonautonomous linear evolution equations es_ES
dc.subject Schrödinger equations es_ES
dc.subject Quantum systems es_ES
dc.subject Time integration methods es_ES
dc.subject Exponential integrators es_ES
dc.subject Magnus integrators es_ES
dc.subject Commutator-free quasi-Magnus exponential integrators es_ES
dc.subject Stability es_ES
dc.subject Local error es_ES
dc.subject Convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrodinger equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/imanum/drz058 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P//NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casas, F.; González, C.; Thalhammer, M. (2021). Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrodinger equations. IMA Journal of Numerical Analysis. 41(1):594-617. https://doi.org/10.1093/imanum/drz058 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/imanum/drz058 es_ES
dc.description.upvformatpinicio 594 es_ES
dc.description.upvformatpfin 617 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\458483 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem