- -

Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration

Mostrar el registro completo del ítem

Anitua, E.; Cerqueira, A.; Romero-Gavilán, F.; García-Arnáez, I.; Martínez-Ramos, C.; Ozturan, S.; Azkargorta, M.... (2021). Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration. International Journal of Implant Dentistry. 7(1):1-11. https://doi.org/10.1186/s40729-021-00314-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181802

Ficheros en el ítem

Metadatos del ítem

Título: Influence of calcium ion-modified implant surfaces in protein adsorption and implant integration
Autor: Anitua, Eduardo Cerqueira, Andreia Romero-Gavilán, Francisco García-Arnáez, Iñaki Martínez-Ramos, Cristina Ozturan, Seda Azkargorta, Mikel Elortza, Félix Gurruchaga, Mariló Goñi, Isabel Suay, Julio Tejero, Ricardo
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ...[+]
Palabras clave: Titanium implants , Osseointegration , Blood coagulation , Implant surface design , Protein adsorption
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Implant Dentistry. (eissn: 2198-4034 )
DOI: 10.1186/s40729-021-00314-1
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s40729-021-00314-1
Código del Proyecto:
info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/
...[+]
info:eu-repo/grantAgreement/UJI//POSDOC%2F2019%2F28/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2018%2F091/
info:eu-repo/grantAgreement/Eusko Jaurlaritza//PRE_2017_2_0044/
info:eu-repo/grantAgreement/UPV/EHU//UFI11%2F56/
info:eu-repo/grantAgreement/MICINN//SEV-2016-0644/
info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/
[-]
Agradecimientos:
This work was supported by Universitat Jaume I under [POSDOC/2019/28], Generalitat Valenciana [GRISOLIAP/2018/091], University of the Basque Country under [UFI11/56], and Basque Government under [PRE_2017_2_0044]. CIC ...[+]
Tipo: Artículo

References

Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47:49–121.

Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39:1406–47.

Sul YT, Johansson C, Albrektsson T. A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants. J R Soc Interface. 2010;7:81–90. [+]
Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports. 2004;47:49–121.

Tejero R, Anitua E, Orive G. Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci. 2014;39:1406–47.

Sul YT, Johansson C, Albrektsson T. A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants. J R Soc Interface. 2010;7:81–90.

Anitua E, Prado R, Orive G, Tejero R. Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res A. 2015;103:969–80.

Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces. 2013;103:395–404.

Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. 23. Drug Discov Today. 2018;23:879–90.

Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58:515–23.

Scheraga HA. The thrombin-fibrinogen interaction. Biophys Chem. 2004;112:117–3.

Anitua E, Tejero R, Alkhraisat MH, Orive G. Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs. 2012;27:97–111.

Chen Z, Klein T, Murray RZ, Crawford R, Chang J, Wu C, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Materials Today. 2016;19:304–21.

Shiu HT, Goss B, Lutton C, Crawford R, Xiao Y. Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev. 2014;20:697–712.

Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40.

Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I, Martínez-Ramos C, Sánchez-Pérez AM, Azkargorta M, et al. Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem. 2018;23:459–70.

Cerqueira A, Romero-Gavilán F, García-Arnáez I, Martinez-Ramos C, Ozturan S, Iloro I, et al. Bioactive zinc-doped sol-gel coating modulates protein adsorption patterns and in vitro cell responses. Mater Sci Eng C. 2021;121:111839.

Cerqueira A, Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, Martinez-Ramos C, Ozturan S, et al. A possible use of melatonin in the dental field: protein adsorption and in vitro cell response on coated titanium. Mater Sci Eng C. 2020;116:111262.

Romero-Gavilan F, Sánchez-Pérez AM, Araújo-Gomes N, Azkargorta M, Iloro I, Elortza F, et al. Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling. 2017;33:676–89.

Araújo-Gomes N, Romero-Gavilán F, Zhang Y, Martinez-Ramos C, Elortza F, Azkargorta M, et al. Complement proteins regulating macrophage polarisation on biomaterials. Colloids Surfaces B Biointerfaces. 2019;181:125–33.

Castañeda S, Largo R, Calvo E, Rodríguez-Salvanés F, Marcos ME, Díaz-Curiel M, et al. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35:34–41.

Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties. Biomed Mater Eng. 1998;8:1–9.

Dahlin C, JC. Osseointegration of Implants. In: Nevins M, GW, editors. Osteology guidelines for oral and maxillofacial regeneration. London: Quintessence Publishing Co Ltd; 2011. p. 103–21.

Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, et al. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling. 2017;33:98–111.

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

Joshy KS, Snigdha S, TS. Plasma-modified polymeric materials for scaffolding of bone tissue engineering. In: Thomas S, Mozetic M, Cvelbar U, Spatenka P, PJ, editors. Non-thermal plasma technology for polymeric materials. Amsterdam: Elsevier; 2019. p. 439–58.

Tejero R, Rossbach P, Keller B, Anitua E, Reviakine I. Time-of-flight secondary ion mass spectrometry with principal component analysis of titania-blood plasma interfaces. Langmuir. 2013;29:902–12.

Anitua E, Piñas L, Murias A, Prado R, Tejero R. Effects of calcium ions on titanium surfaces for bone regeneration. Colloids Surf B Biointerfaces. 2015;130:173–81.

Tengvall P. Proteins at titanium interfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer-Verlag; 2001. p. 458–83.

Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: in-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res A. 2015;103:2661–72.

Minelli C, Kikuta A, Tsud N, Ball MD, Yamamoto A. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J Nanobiotechnology. 2008;6:3.

Sutherland DS, Broberg M, Nygren H, Kasemo B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol Biosci. 2001;1:270–3.

Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors (PRGF-Endoret) promotes bone tissue regeneration by stimulating proliferation, migration and autocrine secretion on primary human osteoblasts. J Periodontol. 2013;84(8):1180–90.

Sánchez-Ilárduya MB, Trouche E, Tejero R, Orive G, Reviakine I, Anitua E. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res A. 2013;101:1478–88.

Hong J, Andersson J, Ekdahl KN, Elgue G, Axén N, Larsson R, et al. Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost. 1999;82:58–64.

Rompen E, Domken O, Degidi M, Pontes AEF, Piattelli A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: a literature review. Clin Oral Implants Res. 2006;17:55–67.

Hong J, Azens A, Ekdahl KN, Granqvist CG, Nilsson B. Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials. 2005;26:1397–403.

Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: in vitro studies of protein adsorption and contact activation. Biomaterials. 1994;15:827–34.

Costa-Neto CM, Dillenburg-Pilla P, Heinrich TA, Parreiras-e-Silva LT, Pereira MGAG, Reis RI, et al. Participation of kallikrein-kinin system in different pathologies. Int Immunopharmacol. 2008;8:135–42.

da Costa PLN, Sirois P, Tannock IF, Chammas R. The role of kinin receptors in cancer and therapeutic opportunities. Cancer Lett. 2014;345:27–38.

Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, et al. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004;15:29–35.

Nakamura S, Matsumoto T, Sasaki J-I, Egusa H, Lee KY, Nakano T, et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A. 2010;16:2467–73.

Anitua E, Tejero R, Pacha-Olivenza MÁ, Fernández-Calderón MC, Delgado-Rastrollo M, Zalduendo MM, et al. Balancing microbial and mammalian cell functions on calcium ion-modified implant surfaces. J Biomed Mater Res - Part B Appl Biomater. 2017;106:421–32.

Bottazzi B, Inforzato A, Messa M, Barbagallo M, Magrini E, Garlanda C, et al. The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodeling. J Hepatol. 2016;64:1416–27.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem