Hernández-Verón, MA.; Martínez Molada, E.; Singh, S. (2021). On the Chandrasekhar integral equation. Computational and Mathematical Methods. 3(6):1-14. https://doi.org/10.1002/cmm4.1150
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/181810
Título:
|
On the Chandrasekhar integral equation
|
Autor:
|
Hernández-Verón, Miguel A.
Martínez Molada, Eulalia
Singh, Sukhjit
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Fecha difusión:
|
|
Resumen:
|
[EN] This study is devoted to solve the Chandrasekhar integral equation that it is used for modeling problems in theory of radiative transfer in a plane-parallel atmosphere, and others research areas like the kinetic theory ...[+]
[EN] This study is devoted to solve the Chandrasekhar integral equation that it is used for modeling problems in theory of radiative transfer in a plane-parallel atmosphere, and others research areas like the kinetic theory of gases, neutron transport, traffic model, the queuing theory among others. First of all, we transform the Chandrasekhar integral equation into a nonlinear Hammerstein-type integral equation with the corresponding Nemystkii operator and the proper nonseparable kernel. Them, we approximate the kernel in order to apply an iterative scheme. This procedure it is solved in two different ways. First one, we solve a nonlinear equation with separable kernel and define an adequate nonlinear operator between Banach spaces that approximates the first problem. Second one, we introduce an approximation for the inverse of the Frechet derivative that appears in the Newton's iterative scheme for solving nonlinear equations. Finally, we perform a numerical experiment in order to compare our results with previous ones published showing that are competitive.
[-]
|
Palabras clave:
|
Convergence order
,
Domain of existence of solution
,
Domain of uniqueness of solution
,
Integral equation
,
Newton iterative scheme
,
Nonlinear equation
,
Nonseparable kernel
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Computational and Mathematical Methods. (eissn:
2577-7408
)
|
DOI:
|
10.1002/cmm4.1150
|
Editorial:
|
John Wiley & Sons
|
Versión del editor:
|
https://doi.org/10.1002/cmm4.1150
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
|
Descripción:
|
This is the peer reviewed version of the following article: Hernández-Verón, MA, Martínez, E, Singh, S. On the Chandrasekhar integral equation. Comp and Math Methods. 2021; 3:e1150, which has been published in final form at https://doi.org/10.1002/cmm4.1150. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
|
Agradecimientos:
|
This research was partially supported by Ministerio de Economía y Competitividad under grant
PGC2018-095896-B-C21-C22.
|
Tipo:
|
Artículo
|