Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Plumed, Fernando | es_ES |
dc.contributor.author | Ferri Ramírez, César | es_ES |
dc.contributor.author | Nieves, David | es_ES |
dc.contributor.author | Hernández-Orallo, José | es_ES |
dc.date.accessioned | 2022-04-05T06:55:42Z | |
dc.date.available | 2022-04-05T06:55:42Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 0884-8173 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/181819 | |
dc.description.abstract | [EN] Nowadays, there is an increasing concern in machine learning about the causes underlying unfair decision making, that is, algorithmic decisions discriminating some groups over others, especially with groups that are defined over protected attributes, such as gender, race and nationality. Missing values are one frequent manifestation of all these latent causes: protected groups are more reluctant to give information that could be used against them, sensitive information for some groups can be erased by human operators, or data acquisition may simply be less complete and systematic for minority groups. However, most recent techniques, libraries and experimental results dealing with fairness in machine learning have simply ignored missing data. In this paper, we present the first comprehensive analysis of the relation between missing values and algorithmic fairness for machine learning: (1) we analyse the sources of missing data and bias, mapping the common causes, (2) we find that rows containing missing values are usually fairer than the rest, which should discourage the consideration of missing values as the uncomfortable ugly data that different techniques and libraries for handling algorithmic bias get rid of at the first occasion, (3) we study the trade-off between performance and fairness when the rows with missing values are used (either because the technique deals with them directly or by imputation methods), and (4) we show that the sensitivity of six different machine-learning techniques to missing values is usually low, which reinforces the view that the rows with missing data contribute more to fairness through the other, nonmissing, attributes. We end the paper with a series of recommended procedures about what to do with missing data when aiming for fair decision making. | es_ES |
dc.description.sponsorship | Ministerio de Economia, Industria y Competitividad, Gobierno de Espana (ES), Grant/Award Number: RTI2018-094403-B-C3; Generalitat Valenciana, Grant/Award Number: PROMETEO/2019/09; Future of Life Institute, Grant/Award Number: RFP2-15; European Commission, Grant/Award Number: DG JRC - HUMAINT project | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | International Journal of Intelligent Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Algorithmic bias | es_ES |
dc.subject | Confirmation bias | es_ES |
dc.subject | Data imputation | es_ES |
dc.subject | Fairness | es_ES |
dc.subject | Missing values | es_ES |
dc.subject | Sample bias | es_ES |
dc.subject | Survey bias | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Missing the missing values: The ugly duckling of fairness in machine learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/int.22415 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C31/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FLI//RFP2-152/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/952215/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098//DEEPTRUST/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Martínez-Plumed, F.; Ferri Ramírez, C.; Nieves, D.; Hernández-Orallo, J. (2021). Missing the missing values: The ugly duckling of fairness in machine learning. International Journal of Intelligent Systems. 36(7):3217-3258. https://doi.org/10.1002/int.22415 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/int.22415 | es_ES |
dc.description.upvformatpinicio | 3217 | es_ES |
dc.description.upvformatpfin | 3258 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\456129 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Future of Life Institute | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |