- -

Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berenguer-Vidal, Rafael es_ES
dc.contributor.author Verdú-Monedero, Rafael es_ES
dc.contributor.author Morales-Sánchez, Juan es_ES
dc.contributor.author Sellés-Navarro, Inmaculada es_ES
dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author García-Pardo, José Gabriel es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-04-28T18:04:49Z
dc.date.available 2022-04-28T18:04:49Z
dc.date.issued 2021-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182267
dc.description.abstract [EN] Glaucoma is a neurodegenerative disease process that leads to progressive damage of the optic nerve to produce visual impairment and blindness. Spectral-domain OCT technology enables peripapillary circular scans of the retina and the measurement of the thickness of the retinal nerve fiber layer (RNFL) for the assessment of the disease status or progression in glaucoma patients. This paper describes a new approach to segment and measure the retinal nerve fiber layer in peripapillary OCT images. The proposed method consists of two stages. In the first one, morphological operators robustly detect the coarse location of the layer boundaries, despite the speckle noise and diverse artifacts in the OCT image. In the second stage, deformable models are initialized with the results of the previous stage to perform a fine segmentation of the boundaries, providing an accurate measurement of the entire RNFL. The results of the RNFL segmentation were qualitatively assessed by ophthalmologists, and the measurements of the thickness of the RNFL were quantitatively compared with those provided by the OCT inbuilt software as well as the state-of-the-art methods. es_ES
dc.description.sponsorship This work was partially funded by Spanish National projects AES2017-PI17/00771 and AES2017-PI17/00821 (Instituto de Salud Carlos III), PID2019-105142RB-C21 (AI4SKIN) (Spanish Ministry of Economy and Competitiveness), PTA2017-14610-I (State Research Spanish Agency), regional project 20901/PI/18 (Fundacion Seneca) and Polytechnic University of Valencia (PAID-01-20). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optical coherence tomography (OCT) es_ES
dc.subject Peripapillary OCT es_ES
dc.subject Automatic layer segmentation es_ES
dc.subject Retinal imaging analysis es_ES
dc.subject Mathematical morphology es_ES
dc.subject Active contours es_ES
dc.subject Glaucoma es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s21238027 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AES2017-PI17%2F00771/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732613/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AES2017-PI17%2F00821/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20901%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-20 nº21589//Programa de Apoyo para la Investigación y Desarrollo de la Universitat Politècnica de València/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PTA2017-14610-I//AYUDA TECNICO DE APOYO MINISTERIO-GARCIA PARDO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Berenguer-Vidal, R.; Verdú-Monedero, R.; Morales-Sánchez, J.; Sellés-Navarro, I.; Del Amor, R.; García-Pardo, JG.; Naranjo Ornedo, V. (2021). Automatic Segmentation of the Retinal Nerve Fiber Layer by Means of Mathematical Morphology and Deformable Models in 2D Optical Coherence Tomography Imaging. Sensors. 21(23):1-30. https://doi.org/10.3390/s21238027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s21238027 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 23 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 34884031 es_ES
dc.identifier.pmcid PMC8659929 es_ES
dc.relation.pasarela S\451591 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem