- -

An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juan-Ripoll, Carla De es_ES
dc.contributor.author Llanes-Jurado, José es_ES
dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2022-04-28T18:04:52Z
dc.date.available 2022-04-28T18:04:52Z
dc.date.issued 2021-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182268
dc.description.abstract [EN] The tool presented in this article can be applied as an ecological measure for evaluating decision-making processes in risky situations. It can be used in different contexts from both Occupational Safety and Health practices and for research purposes. Risk taking (RT) measurement constitutes a challenge for researchers and practitioners and has been addressed from different perspectives. Personality traits and temperamental aspects such as sensation seeking and impulsivity influence the individual's approach to RT, prompting risk-seeking or risk-aversion behaviors. Virtual reality has emerged as a suitable tool for RT measurement, since it enables the exposure of a person to realistic risks, allowing embodied interactions, the application of stealth assessment techniques and physiological real-time measurement. In this article, we present the assessment on decision making in risk environments (AEMIN) tool, as an enhanced version of the spheres and shield maze task, a previous tool developed by the authors. The main aim of this article is to study whether it is possible is to discriminate participants with high versus low scores in the measures of personality, sensation seeking and impulsivity, through their behaviors and physiological responses during playing AEMIN. Applying machine learning methods to the dataset we explored: (a) if through these data it is possible to discriminate between the two populations in each variable; and (b) which parameters better discriminate between the two populations in each variable. The results support the use of AEMIN as an ecological assessment tool to measure RT, since it brings to light behaviors that allow to classify the subjects into high/low risk-related psychological constructs. Regarding physiological measures, galvanic skin response seems to be less salient in prediction models. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness funded project "Assessment and Training on Decision Making in Risk Environments", grant number RTC-2017-6523-6, by the Gerenaliat Valenciana funded project "Rebrand", grant number PROMETEU/2019/105, and by the European Union ERDF (European Regional Development Fund) program of the Valencian Community 2014-2020 funded project "Interfaces de realidad mixta aplicada a salud y toma de decisiones", grant number IDIFEDER/2018/029. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Virtual reality es_ES
dc.subject Risk taking es_ES
dc.subject Personality es_ES
dc.subject Sensation seeking es_ES
dc.subject Impulsivity es_ES
dc.subject Eye tracking es_ES
dc.subject Galvanic skin response es_ES
dc.subject Implicit measures es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app11020825 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029//INTERFACES DE REALIDAD MIXTA APLICADA A SALUD Y TOMA DE DECISIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105//REBRAND (MIXED REALITY AND BRAIN DECISION)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6523-6//EVALUACIÓN Y ENTRENAMIENTO EN TOMA DE DECISIONES EN ENTORNOS DE RIESGO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Juan-Ripoll, CD.; Llanes-Jurado, J.; Chicchi-Giglioli, IA.; Marín-Morales, J.; Alcañiz Raya, ML. (2021). An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures. Applied Sciences. 11(2):1-21. https://doi.org/10.3390/app11020825 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app11020825 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\425793 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem