Mostrar el registro sencillo del ítem
dc.contributor.author | Juan-Ripoll, Carla De | es_ES |
dc.contributor.author | Llanes-Jurado, José | es_ES |
dc.contributor.author | CHICCHI-GIGLIOLI, IRENE ALICE | es_ES |
dc.contributor.author | Marín-Morales, Javier | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.date.accessioned | 2022-04-28T18:04:52Z | |
dc.date.available | 2022-04-28T18:04:52Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182268 | |
dc.description.abstract | [EN] The tool presented in this article can be applied as an ecological measure for evaluating decision-making processes in risky situations. It can be used in different contexts from both Occupational Safety and Health practices and for research purposes. Risk taking (RT) measurement constitutes a challenge for researchers and practitioners and has been addressed from different perspectives. Personality traits and temperamental aspects such as sensation seeking and impulsivity influence the individual's approach to RT, prompting risk-seeking or risk-aversion behaviors. Virtual reality has emerged as a suitable tool for RT measurement, since it enables the exposure of a person to realistic risks, allowing embodied interactions, the application of stealth assessment techniques and physiological real-time measurement. In this article, we present the assessment on decision making in risk environments (AEMIN) tool, as an enhanced version of the spheres and shield maze task, a previous tool developed by the authors. The main aim of this article is to study whether it is possible is to discriminate participants with high versus low scores in the measures of personality, sensation seeking and impulsivity, through their behaviors and physiological responses during playing AEMIN. Applying machine learning methods to the dataset we explored: (a) if through these data it is possible to discriminate between the two populations in each variable; and (b) which parameters better discriminate between the two populations in each variable. The results support the use of AEMIN as an ecological assessment tool to measure RT, since it brings to light behaviors that allow to classify the subjects into high/low risk-related psychological constructs. Regarding physiological measures, galvanic skin response seems to be less salient in prediction models. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministry of Economy and Competitiveness funded project "Assessment and Training on Decision Making in Risk Environments", grant number RTC-2017-6523-6, by the Gerenaliat Valenciana funded project "Rebrand", grant number PROMETEU/2019/105, and by the European Union ERDF (European Regional Development Fund) program of the Valencian Community 2014-2020 funded project "Interfaces de realidad mixta aplicada a salud y toma de decisiones", grant number IDIFEDER/2018/029. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Virtual reality | es_ES |
dc.subject | Risk taking | es_ES |
dc.subject | Personality | es_ES |
dc.subject | Sensation seeking | es_ES |
dc.subject | Impulsivity | es_ES |
dc.subject | Eye tracking | es_ES |
dc.subject | Galvanic skin response | es_ES |
dc.subject | Implicit measures | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app11020825 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029//INTERFACES DE REALIDAD MIXTA APLICADA A SALUD Y TOMA DE DECISIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F105//REBRAND (MIXED REALITY AND BRAIN DECISION)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTC-2017-6523-6//EVALUACIÓN Y ENTRENAMIENTO EN TOMA DE DECISIONES EN ENTORNOS DE RIESGO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.description.bibliographicCitation | Juan-Ripoll, CD.; Llanes-Jurado, J.; Chicchi-Giglioli, IA.; Marín-Morales, J.; Alcañiz Raya, ML. (2021). An Immersive Virtual Reality Game for Predicting Risk Taking through the Use of Implicit Measures. Applied Sciences. 11(2):1-21. https://doi.org/10.3390/app11020825 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app11020825 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\425793 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |