- -

Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Cremades, Santi es_ES
dc.contributor.author Morales-García, Juan es_ES
dc.contributor.author Hernández-Sanjaime, Rocío es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author López-Espín, José J. es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2022-04-28T18:04:54Z
dc.date.available 2022-04-28T18:04:54Z
dc.date.issued 2021-07-26 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182270
dc.description.abstract [EN] We are witnessing the dramatic consequences of the COVID¿19 pandemic which, unfortunately, go beyond the impact on the health system. Until herd immunity is achieved with vaccines, the only available mechanisms for controlling the pandemic are quarantines, perimeter closures and social distancing with the aim of reducing mobility. Governments only apply these measures for a reduced period, since they involve the closure of economic activities such as tourism, cultural activities, or nightlife. The main criterion for establishing these measures and planning socioeconomic subsidies is the evolution of infections. However, the collapse of the health system and the unpredictability of human behavior, among others, make it difficult to predict this evolution in the short to medium term. This article evaluates different models for the early prediction of the evolution of the COVID¿19 pandemic to create a decision support system for policy¿makers. We consider a wide branch of models including artificial neural networks such as LSTM and GRU and statistically based models such as autoregressive (AR) or ARIMA. Moreover, several consensus strategies to ensemble all models into one system are proposed to obtain better results in this uncertain environment. Finally, a multivariate model that includes mobility data provided by Google is proposed to better forecast trend changes in the 14¿day CI. A real case study in Spain is evaluated, providing very accurate results for the prediction of 14¿day CI in scenarios with and without trend changes, reaching 0.93 R2, 4.16 RMSE and 1.08 MAE. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministry of Science and Innovation, under Grants RYC2018-025580-I, RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302 and a predoctoral contract by the Generalitat Valenciana and the European Social Fund under Grant ACIF/2018/219. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Computer science es_ES
dc.subject Scientific data es_ES
dc.subject Statistics es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-021-94696-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F219/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana//AICO%2F2020%2F302/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2015%2F108//ANALISIS DE LA MOVILIDAD Y PERSISTENCIA DE LA INFORMACION EN REDES VEHICULARES. APLICACION A LA GESTION DE ACCIDENTES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6389-5-AR//PLANIFICACIÓN Y GESTIÓN DE RECURSOS HÍDRICOS A PARTIR DE ANÁLISIS DE DATOS DE IOT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation García-Cremades, S.; Morales-García, J.; Hernández-Sanjaime, R.; Martínez-España, R.; Bueno-Crespo, A.; Hernández-Orallo, E.; López-Espín, JJ.... (2021). Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data. Scientific Reports. 11(1):1-16. https://doi.org/10.1038/s41598-021-94696-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-021-94696-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 34312455 es_ES
dc.identifier.pmcid PMC8313557 es_ES
dc.relation.pasarela S\443281 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.contributor.funder Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana es_ES
dc.description.references Cecilia, J. M., Cano, J.-C., Hernández-Orallo, E., Calafate, C. T. & Manzoni, P. Mobile crowdsensing approaches to address the covid-19 pandemic in spain. IET Smart Cities 2, 58–63 (2020). es_ES
dc.description.references Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of sars-cov-2 through the postpandemic period. Science 368, 860–868 (2020). es_ES
dc.description.references Bonaccorsi, G. et al. Economic and social consequences of human mobility restrictions under covid-19. Proc. Natl. Acad. Sci. 117, 15530–15535 (2020). es_ES
dc.description.references OECD & Staff, O. OECD Economic Outlook, vol. 2020 (OECD Publishing, 2020). es_ES
dc.description.references Organization, W. H. et al. Critical Preparedness, Readiness and Response Actions for Covid-19: Interim Guidance, 4 Nov 2020, World Health Organization, Technical Report (2020). es_ES
dc.description.references Organization, W. H. et al. Public Health Surveillance for Covid-19: Interim Guidance, 16 Dec 2020, World Health Organization, Techniacl Report, (2020). es_ES
dc.description.references Han, E. et al. Lessons learnt from easing covid-19 restrictions: An analysis of countries and regions in Asia Pacific and Europe. Lancet (2020). es_ES
dc.description.references Zaki, N. & Mohamed, E. A. The estimations of the covid-19 incubation period: A scoping reviews of the literature. J. Infect. Public Health 14, 638–646 (2021). es_ES
dc.description.references Zoabi, Y., Deri-Rozov, S. & Shomron, N. Machine learning-based prediction of covid-19 diagnosis based on symptoms. NPJ Dig. Med. 4, 1–5 (2021). es_ES
dc.description.references Hellewell, J. et al. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Global Health 8, e488–e496 (2020). es_ES
dc.description.references Ferretti, L. et al. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science (2020). es_ES
dc.description.references Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on covid-19 in Europe. Nature 584, 257–261 (2020). es_ES
dc.description.references Estrada, E. Covid-19 and sars-cov-2. Modeling the present, looking at the future. Phys.Rep. 869, 1–51 (2020). es_ES
dc.description.references Maier, B. F. & Brockmann, D. Effective containment explains subexponential growth in recent confirmed covid-19 cases in china. Science 368, 742–746 (2020). es_ES
dc.description.references Wong, G. N. et al. Modeling covid-19 dynamics in illinois under nonpharmaceutical interventions. Phys. Rev. X 10, 041033 (2020). es_ES
dc.description.references Hernández-Orallo, E., Manzoni, P., Calafate, C. T. & Cano, J. Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: The case of covid-19. IEEE Access 8, 99083–99097 (2020). es_ES
dc.description.references Hernández-Orallo, E., Manzoni, P., Calafate, C. T. & Cano, J. Evaluating the effectiveness of covid-19 bluetooth-based smartphone contact tracing applications. Appl. Sci. 10, 7113 (2020). es_ES
dc.description.references Khakharia, A. et al. Outbreak prediction of covid-19 for dense and populated countries using machine learning. Ann. Data Sci. 8, 1–19 (2021). es_ES
dc.description.references Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: A review. Chaos Solitons Fractals 139, 110059 (2020). es_ES
dc.description.references Rustam, F. et al. Covid-19 future forecasting using supervised machine learning models. IEEE Access 8, 101489–101499 (2020). es_ES
dc.description.references Chimmula, V. K. R. & Zhang, L. Time series forecasting of covid-19 transmission in Canada using ISTM networks. Chaos Solitons Fractals 135, 109864 (2020). es_ES
dc.description.references Hernandez-Matamoros, A., Fujita, H., Hayashi, T. & Perez-Meana, H. Forecasting of covid19 per regions using arima models and polynomial functions. Appl. Soft Comput. 96, 106610 (2020). es_ES
dc.description.references Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. & Ciccozzi, M. Application of the Arima model on the covid-2019 epidemic dataset. Data Brief 29, 105340 (2020). es_ES
dc.description.references Perone, G. An arima model to forecast the spread and the final size of covid-2019 epidemic in italy. medRxiv (2020). es_ES
dc.description.references Sahai, A. K., Rath, N., Sood, V. & Singh, M. P. Arima modelling and forecasting of covid-19 in top five affected countries. Diabetes Metab. Syndr. 14, 1419–1427 (2020). es_ES
dc.description.references Castro, M., Ares, S., Cuesta, J. A. & Manrubia, S. The turning point and end of an expanding epidemic cannot be precisely forecast. Proc. Natl. Acad. Sci. 117, 26190–26196 (2020). es_ES
dc.description.references Petropoulos, F., Makridakis, S. & Stylianou, N. Covid-19: Forecasting confirmed cases and deaths with a simple time series model. Int. J. Forecast. (2020). es_ES
dc.description.references Shahid, F., Zameer, A. & Muneeb, M. Predictions for covid-19 with deep learning models of ISTM GRU and BI-ISTM. Chaos Solitons Fractals 140, 110212 (2020). es_ES
dc.description.references Zeroual, A., Harrou, F., Dairi, A. & Sun, Y. Deep learning methods for forecasting covid-19 time-series data: A comparative study. Chaos Solitons Fractals 140, 110212 (2020). es_ES
dc.description.references Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C. & dos Santos Coelho, L. Short-term forecasting covid-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Solitons Fractals 135, 109853 (2020). es_ES
dc.description.references Linka, K., Peirlinck, M. & Kuhl, E. The reproduction number of covid-19 and its correlation with public health interventions. Comput. Mech. 66, 1035–1050 (2020). es_ES
dc.description.references Kraemer, M. U. et al. The effect of human mobility and control measures on the covid-19 epidemic in China. Science 368, 493–497 (2020). es_ES
dc.description.references Buckee, C. O. et al. Aggregated mobility data could help fight covid-19. Sci. (N. Y.) 368, 145 (2020). es_ES
dc.description.references Hernando, A., Mateo, D., Bayer, J. & Barrios, I. Radius of gyration as predictor of covid-19 deaths trend with three-weeks offset. medRxiv (2021). es_ES
dc.description.references Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008). es_ES
dc.description.references Cot, C., Cacciapaglia, G. & Sannino, F. Mining google and apple mobility data: Temporal anatomy for covid-19 social distancing. Sci. Rep. 11, 4150 (2021). es_ES
dc.description.references Nouvellet, P. et al. Reduction in mobility and covid-19 transmission. Nat. Commun. 12, 1090 (2021). es_ES
dc.description.references Kraemer, M. U. G. et al. Data curation during a pandemic and lessons learned from covid-19. Nat. Comput. Sci. 1, 9–10 (2021). es_ES
dc.description.references Palit, A. K. & Popovic, D. Computational Intelligence in time Series Forecasting: Theory and Engineering Applications (Springer Science & Business Media, 2006). es_ES
dc.description.references Guillén-Navarro, M. A. et al. A decision support system for water optimization in anti-frost techniques by sprinklers. Sensors 20, 7129 (2020). es_ES
dc.description.references Tavenard, R. et al. Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21, 1–6 (2020). es_ES
dc.description.references de Sanidad, M. Plan de respuesta temprana en un escenario de control de la pandemia por COVID-19 (Gobierno de España, 2020). es_ES
dc.description.references Cot, C., Cacciapaglia, G. & Sannino, F. Mining google and apple mobility data: Temporal anatomy for covid-19 social distancing. Sci. Rep. 11, 1–8 (2021). es_ES
dc.description.references Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991). es_ES
dc.description.references Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 7, 1525–1534 (2014). es_ES
dc.description.references Spearman, C. The proof and measurement of association between two things. (1961). es_ES
dc.description.references Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica J. Econ. Soc. 424–438 (1969). es_ES
dc.description.references Jolliffe, I. Principal component analysis. Technometrics 45, 276 (2003). es_ES
dc.description.references Mills, T. C. & Mills, T. C. Time Series Techniques for Economists (Cambridge University Press, 1991). es_ES
dc.description.references Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: Forecasting and Control (John Wiley & Sons, 2015). es_ES
dc.description.references Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997). es_ES
dc.description.references Cho, K. et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014). es_ES
dc.description.references Hoffmann, F., Bertram, T., Mikut, R., Reischl, M. & Nelles, O. Benchmarking in classification and regression. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 9, e1318 (2019). es_ES
dc.description.references Huang, X., Li, Z., Jiang, Y., Li, X. & Porter, D. Twitter reveals human mobility dynamics during the covid-19 pandemic. PloS ONE 15, e0241957 (2020). es_ES
dc.description.references Yilmazkuday, H. Stay-at-home works to fight against covid-19: International evidence from google mobility data. J. Human Behav. Soc. Environ. 31, 1–11 (2020). es_ES
dc.description.references Schnabel, R. B., Koonatz, J. E. & Weiss, B. E. A modular system of algorithms for unconstrained minimization. ACM Trans. Math. Softw. (TOMS) 11, 419–440 (1985). es_ES
dc.description.references Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011). es_ES
dc.description.references Taylor, S. J. & Letham, B. Forecasting at scale. Am. Stat. 72, 37–45 (2018). es_ES
dc.description.references Le, T. T., Fu, W. & Moore, J. H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36, 250–256 (2020). es_ES
dc.description.references Indhuja, M. & Sindhuja, P. Prediction of covid-19 cases in India using prophet. Int. J. Stat. Appl. Math. 5, 103–106 (2020). es_ES
dc.description.references Han, T., Gois, F. N. B., Oliveira, R., Prates, L. R. & de Almeida Porto, M. M. Modeling the progression of covid-19 deaths using kalman filter and automl. Soft Comput. 1–16 (2021). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem