Mostrar el registro sencillo del ítem
dc.contributor.author | García-Cremades, Santi | es_ES |
dc.contributor.author | Morales-García, Juan | es_ES |
dc.contributor.author | Hernández-Sanjaime, Rocío | es_ES |
dc.contributor.author | Martínez-España, Raquel | es_ES |
dc.contributor.author | Bueno-Crespo, Andrés | es_ES |
dc.contributor.author | Hernández-Orallo, Enrique | es_ES |
dc.contributor.author | López-Espín, José J. | es_ES |
dc.contributor.author | Cecilia-Canales, José María | es_ES |
dc.date.accessioned | 2022-04-28T18:04:54Z | |
dc.date.available | 2022-04-28T18:04:54Z | |
dc.date.issued | 2021-07-26 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182270 | |
dc.description.abstract | [EN] We are witnessing the dramatic consequences of the COVID¿19 pandemic which, unfortunately, go beyond the impact on the health system. Until herd immunity is achieved with vaccines, the only available mechanisms for controlling the pandemic are quarantines, perimeter closures and social distancing with the aim of reducing mobility. Governments only apply these measures for a reduced period, since they involve the closure of economic activities such as tourism, cultural activities, or nightlife. The main criterion for establishing these measures and planning socioeconomic subsidies is the evolution of infections. However, the collapse of the health system and the unpredictability of human behavior, among others, make it difficult to predict this evolution in the short to medium term. This article evaluates different models for the early prediction of the evolution of the COVID¿19 pandemic to create a decision support system for policy¿makers. We consider a wide branch of models including artificial neural networks such as LSTM and GRU and statistically based models such as autoregressive (AR) or ARIMA. Moreover, several consensus strategies to ensemble all models into one system are proposed to obtain better results in this uncertain environment. Finally, a multivariate model that includes mobility data provided by Google is proposed to better forecast trend changes in the 14¿day CI. A real case study in Spain is evaluated, providing very accurate results for the prediction of 14¿day CI in scenarios with and without trend changes, reaching 0.93 R2, 4.16 RMSE and 1.08 MAE. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science and Innovation, under Grants RYC2018-025580-I, RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302 and a predoctoral contract by the Generalitat Valenciana and the European Social Fund under Grant ACIF/2018/219. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Computer science | es_ES |
dc.subject | Scientific data | es_ES |
dc.subject | Statistics | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-021-94696-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F219/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana//AICO%2F2020%2F302/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2015%2F108//ANALISIS DE LA MOVILIDAD Y PERSISTENCIA DE LA INFORMACION EN REDES VEHICULARES. APLICACION A LA GESTION DE ACCIDENTES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6389-5-AR//PLANIFICACIÓN Y GESTIÓN DE RECURSOS HÍDRICOS A PARTIR DE ANÁLISIS DE DATOS DE IOT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | García-Cremades, S.; Morales-García, J.; Hernández-Sanjaime, R.; Martínez-España, R.; Bueno-Crespo, A.; Hernández-Orallo, E.; López-Espín, JJ.... (2021). Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data. Scientific Reports. 11(1):1-16. https://doi.org/10.1038/s41598-021-94696-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-021-94696-2 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 34312455 | es_ES |
dc.identifier.pmcid | PMC8313557 | es_ES |
dc.relation.pasarela | S\443281 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.contributor.funder | Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana | es_ES |
dc.description.references | Cecilia, J. M., Cano, J.-C., Hernández-Orallo, E., Calafate, C. T. & Manzoni, P. Mobile crowdsensing approaches to address the covid-19 pandemic in spain. IET Smart Cities 2, 58–63 (2020). | es_ES |
dc.description.references | Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the transmission dynamics of sars-cov-2 through the postpandemic period. Science 368, 860–868 (2020). | es_ES |
dc.description.references | Bonaccorsi, G. et al. Economic and social consequences of human mobility restrictions under covid-19. Proc. Natl. Acad. Sci. 117, 15530–15535 (2020). | es_ES |
dc.description.references | OECD & Staff, O. OECD Economic Outlook, vol. 2020 (OECD Publishing, 2020). | es_ES |
dc.description.references | Organization, W. H. et al. Critical Preparedness, Readiness and Response Actions for Covid-19: Interim Guidance, 4 Nov 2020, World Health Organization, Technical Report (2020). | es_ES |
dc.description.references | Organization, W. H. et al. Public Health Surveillance for Covid-19: Interim Guidance, 16 Dec 2020, World Health Organization, Techniacl Report, (2020). | es_ES |
dc.description.references | Han, E. et al. Lessons learnt from easing covid-19 restrictions: An analysis of countries and regions in Asia Pacific and Europe. Lancet (2020). | es_ES |
dc.description.references | Zaki, N. & Mohamed, E. A. The estimations of the covid-19 incubation period: A scoping reviews of the literature. J. Infect. Public Health 14, 638–646 (2021). | es_ES |
dc.description.references | Zoabi, Y., Deri-Rozov, S. & Shomron, N. Machine learning-based prediction of covid-19 diagnosis based on symptoms. NPJ Dig. Med. 4, 1–5 (2021). | es_ES |
dc.description.references | Hellewell, J. et al. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. Lancet Global Health 8, e488–e496 (2020). | es_ES |
dc.description.references | Ferretti, L. et al. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science (2020). | es_ES |
dc.description.references | Flaxman, S. et al. Estimating the effects of non-pharmaceutical interventions on covid-19 in Europe. Nature 584, 257–261 (2020). | es_ES |
dc.description.references | Estrada, E. Covid-19 and sars-cov-2. Modeling the present, looking at the future. Phys.Rep. 869, 1–51 (2020). | es_ES |
dc.description.references | Maier, B. F. & Brockmann, D. Effective containment explains subexponential growth in recent confirmed covid-19 cases in china. Science 368, 742–746 (2020). | es_ES |
dc.description.references | Wong, G. N. et al. Modeling covid-19 dynamics in illinois under nonpharmaceutical interventions. Phys. Rev. X 10, 041033 (2020). | es_ES |
dc.description.references | Hernández-Orallo, E., Manzoni, P., Calafate, C. T. & Cano, J. Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: The case of covid-19. IEEE Access 8, 99083–99097 (2020). | es_ES |
dc.description.references | Hernández-Orallo, E., Manzoni, P., Calafate, C. T. & Cano, J. Evaluating the effectiveness of covid-19 bluetooth-based smartphone contact tracing applications. Appl. Sci. 10, 7113 (2020). | es_ES |
dc.description.references | Khakharia, A. et al. Outbreak prediction of covid-19 for dense and populated countries using machine learning. Ann. Data Sci. 8, 1–19 (2021). | es_ES |
dc.description.references | Lalmuanawma, S., Hussain, J. & Chhakchhuak, L. Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: A review. Chaos Solitons Fractals 139, 110059 (2020). | es_ES |
dc.description.references | Rustam, F. et al. Covid-19 future forecasting using supervised machine learning models. IEEE Access 8, 101489–101499 (2020). | es_ES |
dc.description.references | Chimmula, V. K. R. & Zhang, L. Time series forecasting of covid-19 transmission in Canada using ISTM networks. Chaos Solitons Fractals 135, 109864 (2020). | es_ES |
dc.description.references | Hernandez-Matamoros, A., Fujita, H., Hayashi, T. & Perez-Meana, H. Forecasting of covid19 per regions using arima models and polynomial functions. Appl. Soft Comput. 96, 106610 (2020). | es_ES |
dc.description.references | Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. & Ciccozzi, M. Application of the Arima model on the covid-2019 epidemic dataset. Data Brief 29, 105340 (2020). | es_ES |
dc.description.references | Perone, G. An arima model to forecast the spread and the final size of covid-2019 epidemic in italy. medRxiv (2020). | es_ES |
dc.description.references | Sahai, A. K., Rath, N., Sood, V. & Singh, M. P. Arima modelling and forecasting of covid-19 in top five affected countries. Diabetes Metab. Syndr. 14, 1419–1427 (2020). | es_ES |
dc.description.references | Castro, M., Ares, S., Cuesta, J. A. & Manrubia, S. The turning point and end of an expanding epidemic cannot be precisely forecast. Proc. Natl. Acad. Sci. 117, 26190–26196 (2020). | es_ES |
dc.description.references | Petropoulos, F., Makridakis, S. & Stylianou, N. Covid-19: Forecasting confirmed cases and deaths with a simple time series model. Int. J. Forecast. (2020). | es_ES |
dc.description.references | Shahid, F., Zameer, A. & Muneeb, M. Predictions for covid-19 with deep learning models of ISTM GRU and BI-ISTM. Chaos Solitons Fractals 140, 110212 (2020). | es_ES |
dc.description.references | Zeroual, A., Harrou, F., Dairi, A. & Sun, Y. Deep learning methods for forecasting covid-19 time-series data: A comparative study. Chaos Solitons Fractals 140, 110212 (2020). | es_ES |
dc.description.references | Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C. & dos Santos Coelho, L. Short-term forecasting covid-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Solitons Fractals 135, 109853 (2020). | es_ES |
dc.description.references | Linka, K., Peirlinck, M. & Kuhl, E. The reproduction number of covid-19 and its correlation with public health interventions. Comput. Mech. 66, 1035–1050 (2020). | es_ES |
dc.description.references | Kraemer, M. U. et al. The effect of human mobility and control measures on the covid-19 epidemic in China. Science 368, 493–497 (2020). | es_ES |
dc.description.references | Buckee, C. O. et al. Aggregated mobility data could help fight covid-19. Sci. (N. Y.) 368, 145 (2020). | es_ES |
dc.description.references | Hernando, A., Mateo, D., Bayer, J. & Barrios, I. Radius of gyration as predictor of covid-19 deaths trend with three-weeks offset. medRxiv (2021). | es_ES |
dc.description.references | Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008). | es_ES |
dc.description.references | Cot, C., Cacciapaglia, G. & Sannino, F. Mining google and apple mobility data: Temporal anatomy for covid-19 social distancing. Sci. Rep. 11, 4150 (2021). | es_ES |
dc.description.references | Nouvellet, P. et al. Reduction in mobility and covid-19 transmission. Nat. Commun. 12, 1090 (2021). | es_ES |
dc.description.references | Kraemer, M. U. G. et al. Data curation during a pandemic and lessons learned from covid-19. Nat. Comput. Sci. 1, 9–10 (2021). | es_ES |
dc.description.references | Palit, A. K. & Popovic, D. Computational Intelligence in time Series Forecasting: Theory and Engineering Applications (Springer Science & Business Media, 2006). | es_ES |
dc.description.references | Guillén-Navarro, M. A. et al. A decision support system for water optimization in anti-frost techniques by sprinklers. Sensors 20, 7129 (2020). | es_ES |
dc.description.references | Tavenard, R. et al. Tslearn, a machine learning toolkit for time series data. J. Mach. Learn. Res. 21, 1–6 (2020). | es_ES |
dc.description.references | de Sanidad, M. Plan de respuesta temprana en un escenario de control de la pandemia por COVID-19 (Gobierno de España, 2020). | es_ES |
dc.description.references | Cot, C., Cacciapaglia, G. & Sannino, F. Mining google and apple mobility data: Temporal anatomy for covid-19 social distancing. Sci. Rep. 11, 1–8 (2021). | es_ES |
dc.description.references | Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991). | es_ES |
dc.description.references | Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 7, 1525–1534 (2014). | es_ES |
dc.description.references | Spearman, C. The proof and measurement of association between two things. (1961). | es_ES |
dc.description.references | Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica J. Econ. Soc. 424–438 (1969). | es_ES |
dc.description.references | Jolliffe, I. Principal component analysis. Technometrics 45, 276 (2003). | es_ES |
dc.description.references | Mills, T. C. & Mills, T. C. Time Series Techniques for Economists (Cambridge University Press, 1991). | es_ES |
dc.description.references | Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: Forecasting and Control (John Wiley & Sons, 2015). | es_ES |
dc.description.references | Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997). | es_ES |
dc.description.references | Cho, K. et al. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014). | es_ES |
dc.description.references | Hoffmann, F., Bertram, T., Mikut, R., Reischl, M. & Nelles, O. Benchmarking in classification and regression. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 9, e1318 (2019). | es_ES |
dc.description.references | Huang, X., Li, Z., Jiang, Y., Li, X. & Porter, D. Twitter reveals human mobility dynamics during the covid-19 pandemic. PloS ONE 15, e0241957 (2020). | es_ES |
dc.description.references | Yilmazkuday, H. Stay-at-home works to fight against covid-19: International evidence from google mobility data. J. Human Behav. Soc. Environ. 31, 1–11 (2020). | es_ES |
dc.description.references | Schnabel, R. B., Koonatz, J. E. & Weiss, B. E. A modular system of algorithms for unconstrained minimization. ACM Trans. Math. Softw. (TOMS) 11, 419–440 (1985). | es_ES |
dc.description.references | Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011). | es_ES |
dc.description.references | Taylor, S. J. & Letham, B. Forecasting at scale. Am. Stat. 72, 37–45 (2018). | es_ES |
dc.description.references | Le, T. T., Fu, W. & Moore, J. H. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36, 250–256 (2020). | es_ES |
dc.description.references | Indhuja, M. & Sindhuja, P. Prediction of covid-19 cases in India using prophet. Int. J. Stat. Appl. Math. 5, 103–106 (2020). | es_ES |
dc.description.references | Han, T., Gois, F. N. B., Oliveira, R., Prates, L. R. & de Almeida Porto, M. M. Modeling the progression of covid-19 deaths using kalman filter and automl. Soft Comput. 1–16 (2021). | es_ES |
upv.costeAPC | 1690 | es_ES |