- -

Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lopez-Serrano, Lidia es_ES
dc.contributor.author Calatayud, Ángeles es_ES
dc.contributor.author López Galarza, Salvador Vicente es_ES
dc.contributor.author Serrano Salom, Ramón es_ES
dc.contributor.author Bueso Rodenas, Eduardo es_ES
dc.date.accessioned 2022-04-29T18:04:15Z
dc.date.available 2022-04-29T18:04:15Z
dc.date.issued 2021-04-08 es_ES
dc.identifier.issn 1471-2229 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182306
dc.description.abstract [EN] Background Pepper is one of the most cultivated crops worldwide, but is sensitive to salinity. This sensitivity is dependent on varieties and our knowledge about how they can face such stress is limited, mainly according to a molecular point of view. This is the main reason why we decided to develop this transcriptomic analysis. Tolerant and sensitive accessions, respectively called A25 and A6, were grown for 14 days under control conditions and irrigated with 70 mM of NaCl. Biomass, different physiological parameters and differentially expressed genes were analysed to give response to differential salinity mechanisms between both accessions. Results The genetic changes found between the accessions under both control and stress conditions could explain the physiological behaviour in A25 by the decrease of osmotic potential that could be due mainly to an increase in potassium and proline accumulation, improved growth (e.g. expansins), more efficient starch accumulation (e.g. BAM1), ion homeostasis (e.g. CBL9, HAI3, BASS1), photosynthetic protection (e.g. FIB1A, TIL, JAR1) and antioxidant activity (e.g. PSDS3, SnRK2.10). In addition, misregulation of ABA signalling (e.g. HAB1, ERD4, HAI3) and other stress signalling genes (e.g. JAR1) would appear crucial to explain the different sensitivity to NaCl in both accessions. Conclusions After analysing the physiological behaviour and transcriptomic results, we have concluded that A25 accession utilizes different strategies to cope better salt stress, being ABA-signalling a pivotal point of regulation. However, other strategies, such as the decrease in osmotic potential to preserve water status in leaves seem to be important to explain the defence response to salinity in pepper A25 plants. es_ES
dc.description.sponsorship This work was financed by the INIA (Spain) and the Ministerio de Ciencia, Innovacion y Universidades (RTA2017-00030-C02-00) and the European Regional Development Fund (ERDF). Lidia Lopez-Serrano is a beneficiary of a doctoral fellowship (FPI-INIA). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Plant Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Abscisic acid es_ES
dc.subject Growth es_ES
dc.subject Ion homeostasis es_ES
dc.subject Photosynthesis es_ES
dc.subject Salt stress es_ES
dc.subject Tolerant accessions es_ES
dc.subject Pepper es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12870-021-02938-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2017-00030-C02-00/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Lopez-Serrano, L.; Calatayud, Á.; López Galarza, SV.; Serrano Salom, R.; Bueso Rodenas, E. (2021). Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC Plant Biology. 21(1):1-17. https://doi.org/10.1186/s12870-021-02938-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12870-021-02938-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33832439 es_ES
dc.identifier.pmcid PMC8028838 es_ES
dc.relation.pasarela S\434817 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references Tripodi P, Kumar S. The Capsicum Crop: An Introduction. In: Ramchiary N, Kole C, editors. The Capsicum genome. Switzerland: Springer; 2019. p. 1–8. https://doi.org/10.1007/978-3-319-97217-6_1. es_ES
dc.description.references Condés Rodríguez LF. Pimiento. In: Maroto Borrego JV, Baixauli Soria C, editors. Cultivos hortícolas al aire libre. Cajamar. Cajamar; 2017. p. 471–507. es_ES
dc.description.references Ayers RS, Westcot DW. Water quality for agriculture. Rome: FAO; 1985. es_ES
dc.description.references Bojórquez-Quintal E, Velarde-Buendía A, Ku-González Á, Carillo-Pech M, Ortega-Camacho D, Echevarría-Machado I, et al. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Front Plant Sci. 2014;5:1–14. https://doi.org/10.3389/fpls.2014.00605. es_ES
dc.description.references Zaman M, Shahid SA, Heng L. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-96190-3. es_ES
dc.description.references De Pascale S, Ruggiero C, Barbieri G, Maggio A. Physiological Responses of Pepper to Salinity and Drought. J Am Soc Hortic Sci. 2003;128:48–54. https://doi.org/10.21273/JASHS.128.1.0048. es_ES
dc.description.references Bojórquez-Quintal JE, Echevarría-Machado L, Medina-Lara Á, Martinez-Estevez M. Plants’ challenges in a salinized world: the case of Capsicum. Afri J Biotechnol. 2012;11(72):13614–26. https://doi.org/10.5897/AJB12.2145. es_ES
dc.description.references Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59(1):651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911. es_ES
dc.description.references Isayenkov SV, Maathuis FJM. Plant salinity stress: many unanswered questions remain. Front Plant Sci. 2019;10:1–11. https://doi.org/10.3389/fpls.2019.00080. es_ES
dc.description.references Hossain MR, Bassel GW, Pritchard J, Sharma GP, Ford-Lloyd BV. Trait specific expression profiling of salt stress responsive genes in diverse Rice genotypes as determined by modified significance analysis of microarrays. Front Plant Sci. 2016;7:1–17. https://doi.org/10.3389/fpls.2016.00567. es_ES
dc.description.references Aktas H, Abak K, Cakmak I. Genotypic variation in the response of pepper to salinity. Sci Hortic (Amsterdam). 2006;110(3):260–6. https://doi.org/10.1016/j.scienta.2006.07.017. es_ES
dc.description.references Penella C, Nebauer SG, Lopéz-Galarza S, San Bautista A, Gorbe E, Calatayud A. Evaluation for salt stress tolerance of pepper genotypes to be used as rootstocks. J Food, Agric Environ. 2013;11:1101–7. es_ES
dc.description.references Özdemir B, Tanyolaç ZÖ, Ulukapı K, Onus AN. Evaluation of salinity tolerance level of some pepper (Capsicum annuum L.) cultivars. Int J Agric Innov Res. 2016;5:2319–1473. es_ES
dc.description.references López-Serrano L, Penella C, San-Bautista A, López-Galarza S, Calatayud A. Physiological changes of pepper accessions in response to salinity and water stress. Spanish J Agric Res. 2017;15(3):1–10. https://doi.org/10.5424/sjar/2017153-11147. es_ES
dc.description.references Penella C, Nebauer SG, Quiñones A, San Bautista A, López-Galarza S, Calatayud A. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Sci. 2015;230:12–22. https://doi.org/10.1016/j.plantsci.2014.10.007. es_ES
dc.description.references López-Serrano L, Canet-Sanchis G, Vuletin Selak G, Penella C, San Bautista A, López-Galarza S, et al. Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiol Biochem. 2020;148:207–19. https://doi.org/10.1016/j.plaphy.2020.01.016. es_ES
dc.description.references Li T, Xu X, Li Y, Wang H, Li Z, Li Z. Comparative transcriptome analysis reveals differential transcription in heat-susceptible and heat-tolerant pepper (Capsicum annum L.) cultivars under heat stress. J Plant Biol. 2015;58(6):411–24. https://doi.org/10.1007/s12374-015-0423-z. es_ES
dc.description.references Wang J, Lv J, Liu Z, Liu Y, Song J, Ma Y, et al. Integration of Transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress. Int J Mol Sci. 2019;20(20):5042. https://doi.org/10.3390/ijms20205042. es_ES
dc.description.references Rai VP, Rai A, Kumar R, Kumar S, Kumar S, Singh M, et al. Microarray analyses for identifying genes conferring resistance to pepper leaf curl virus in chilli pepper ( Capsicum spp.). Genomics Data. 2016;9:140–2. https://doi.org/10.1016/j.gdata.2016.08.002. es_ES
dc.description.references Li J, Yang P, Kang J, Gan Y, Yu J, Calderón-Urrea A, et al. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-Epibrassinolide in response to chilling. Front Plant Sci. 2016;7:1–17. https://doi.org/10.3389/fpls.2016.01281. es_ES
dc.description.references Lim CW, Lim S, Baek W, Lee SC. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response. Physiol Plant. 2015;154(4):526–42. https://doi.org/10.1111/ppl.12298. es_ES
dc.description.references Wang J-E, Liu K-K, Li D-W, Zhang Y-L, Zhao Q, He Y-M, et al. A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophtora capsici infection as well as abiotic stress tolerance. Int J Mol Sci. 2013;14(2):3158–77. https://doi.org/10.3390/ijms14023158. es_ES
dc.description.references Bulle M, Yarra R, Abbagani S. Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed. 2016;36. https://doi.org/10.1007/s11032-016-0451-5. es_ES
dc.description.references Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, Bautista AS, et al. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physiol. 2016;193:1–11. https://doi.org/10.1016/j.jplph.2016.02.007. es_ES
dc.description.references Ryu H, Cho Y-G. Plant hormones in salt stress tolerance. J Plant Biol. 2015;58(3):147–55. https://doi.org/10.1007/s12374-015-0103-z. es_ES
dc.description.references Ding H, Lai J, Wu Q, Zhang S, Chen L, Dai Y-S, et al. Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response. Plant Sci. 2016;244:1–7. https://doi.org/10.1016/j.plantsci.2015.11.009. es_ES
dc.description.references Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, et al. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol. 2019;181(4):1668–82. https://doi.org/10.1104/pp.19.00956. es_ES
dc.description.references Ghaffari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M. Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet. Spanish J Agric Res. 2020;17(4):1–12. https://doi.org/10.5424/sjar/2019174-15380. es_ES
dc.description.references Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, et al. Arabidopsis CYP94B3 encodes Jasmonyl-l-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of Jasmonate. Plant Cell Physiol. 2011;52(10):1757–65. https://doi.org/10.1093/pcp/pcr110. es_ES
dc.description.references Ahmad P, Azooz MM, Prasad MNV. Ecophysiology and responses of plants under salt stress. Springer New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-4747-4. es_ES
dc.description.references Alam MM, Nahar K, Hasanuzzaman M, Fujita M. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep. 2014;8(3):279–93. https://doi.org/10.1007/s11816-014-0321-8. es_ES
dc.description.references Fernando VCD, Schroeder DF. Role of ABA in Arabidopsis Salt, Drought, and Desiccation Tolerance. In: Shanker A, Shanker C, editors. Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. IntechOpen. 2016. p. 507–24. https://doi.org/10.5772/61957. es_ES
dc.description.references He T, Cramer GR. Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil. 1996;179(1):25–33. https://doi.org/10.1007/BF00011639. es_ES
dc.description.references Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, et al. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J. 2004;37(3):354–69. https://doi.org/10.1046/j.1365-313X.2003.01966.x. es_ES
dc.description.references Wang Z, Ji H, Yuan B, Wang S, Su C, Yao B, et al. ABA signalling is fine-tuned by antagonistic HAB1 variants. Nat Commun. 2015;6:1–12. es_ES
dc.description.references Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 2004;9(5):236–43. https://doi.org/10.1016/j.tplants.2004.03.007. es_ES
dc.description.references Wei M, Xu X, Li C. Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress. Sci Rep. 2017;7(1):17910. https://doi.org/10.1038/s41598-017-18219-8. es_ES
dc.description.references Galon Y, Finkler A, Fromm H. Calcium-regulated transcription in plants. Mol Plant. 2010;3(4):653–69. https://doi.org/10.1093/mp/ssq019. es_ES
dc.description.references Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, et al. The AP2/ERF transcription factor TINY modulates Brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell. 2019;31(8):1788–806. https://doi.org/10.1105/tpc.18.00918. es_ES
dc.description.references Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 2008;582(6):943–8. https://doi.org/10.1016/j.febslet.2008.02.037. es_ES
dc.description.references Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 2009;21(3):972–84. https://doi.org/10.1105/tpc.108.063958. es_ES
dc.description.references Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H. Calmodulin-binding transcription activator 6: a key regulator of Na+ homeostasis during germination. Plant Physiol. 2019;180(2):1101–18. https://doi.org/10.1104/pp.19.00119. es_ES
dc.description.references Kusvuran S, Yasar F, Ellialtioglu S, Abak K. Utilizing some of screening Methots in order to determine of tolerance of salt stress in the melon (Cucumis melo L.). Res J Agric Biol Sci. 2007;3:40–5. es_ES
dc.description.references Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, et al. Effect of salt stress on cucumber: Na+−K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant. 2010;32(1):103–14. https://doi.org/10.1007/s11738-009-0385-1. es_ES
dc.description.references Ferreira JFS, Liu X, Suarez DL. Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Sci Hortic (Amsterdam). 2019;243:401–10. https://doi.org/10.1016/j.scienta.2018.07.016. es_ES
dc.description.references Bartha C, Fodorpataki L, Del Carmen M-BM, Popescu O, Carvajal M. Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. J Appl Bot Food Qual. 2015;88:42–8. es_ES
dc.description.references Liu Y, Li H, Shi Y, Song Y, Wang T, Li Y. A maize early responsive to dehydration gene, ZmERD4, provides enhanced drought and salt tolerance in Arabidopsis. Plant Mol Biol Report. 2009;27(4):542–8. https://doi.org/10.1007/s11105-009-0119-y. es_ES
dc.description.references Acosta-Motos J, Ortuño M, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M, Hernandez J. Plant responses to salt stress: adaptive mechanisms. Agronomy. 2017;7(1):1–38. https://doi.org/10.3390/agronomy7010018. es_ES
dc.description.references Sun Y, Kong X, Li C, Liu Y, Ding Z. Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One. 2015;10(5):e0124032. https://doi.org/10.1371/journal.pone.0124032. es_ES
dc.description.references Qi F, Zhang F. Cell cycle regulation in the plant response to stress. Front Plant Sci. 2020;10:1765. https://doi.org/10.3389/fpls.2019.01765. es_ES
dc.description.references Schuppler U, He P-H, John PCL, Munns R. Effect of water stress on cell division and Cdc2-like cell cycle kinase activity in wheat leaves. Plant Physiol. 1998;117(2):667–78. https://doi.org/10.1104/pp.117.2.667. es_ES
dc.description.references Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016;35(5):949–65. https://doi.org/10.1007/s00299-016-1948-4. es_ES
dc.description.references Chen L, Zou W, Fei C, Wu G, Li X, Lin H, et al. α-Expansin EXPA4 positively regulates abiotic stress tolerance but negatively regulates pathogen resistance in Nicotiana tabacum. Plant Cell Physiol. 2018;59:2317–30. https://doi.org/10.1093/pcp/pcy155. es_ES
dc.description.references Geilfus C-M, Zörb C, Mühling KH. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiol Biochem. 2010;48(12):993–8. https://doi.org/10.1016/j.plaphy.2010.09.011. es_ES
dc.description.references Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 2017;214(3):943–51. https://doi.org/10.1111/nph.14491. es_ES
dc.description.references Riffat A, Sajid M, Ahmad A. Alleviation of Adverse Effects of Salt Stress on Growth og Maize (Zea mays L.) by Sulfur Supplementation. Pak J Bot. 2020;52:763–73. https://doi.org/10.30848/PJB2020-3(38. es_ES
dc.description.references Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103(4):551–60. https://doi.org/10.1093/aob/mcn125. es_ES
dc.description.references Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, Costa A, et al. β-Amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot. 2016;67(6):1819–26. https://doi.org/10.1093/jxb/erv572. es_ES
dc.description.references Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, et al. Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot. 2011;62(2):545–55. https://doi.org/10.1093/jxb/erq288. es_ES
dc.description.references Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167(3):645–63. https://doi.org/10.1111/j.1469-8137.2005.01487.x. es_ES
dc.description.references Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol. 2000;51(1):463–99. https://doi.org/10.1146/annurev.arplant.51.1.463. es_ES
dc.description.references Chartzoulakis K, Psarras G, Vemmos S, Loupassaki M, Bertaki M. Response of two olive cultivars to salt stress and potassium supplement. J Plant Nutr. 2006;29(11):2063–78. https://doi.org/10.1080/01904160600932682. es_ES
dc.description.references Wu H, Zhang X, Giraldo JP, Shabala S. It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant Soil. 2018;431(1-2):1–17. https://doi.org/10.1007/s11104-018-3770-y. es_ES
dc.description.references Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD. Potassium uptake supporting plant growth in the absence of AKT1 channel activity. J Gen Physiol. 1999;113(6):909–18. https://doi.org/10.1085/jgp.113.6.909. es_ES
dc.description.references Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, et al. Characterization of the calcineurin B-like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci. 2016;253:118–29. https://doi.org/10.1016/j.plantsci.2016.09.011. es_ES
dc.description.references Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, et al. A protein kinase, interacting with two Calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell. 2006;125(7):1347–60. https://doi.org/10.1016/j.cell.2006.06.011. es_ES
dc.description.references Bhaskara GB, Nguyen TT, Verslues PE. Unique drought resistance functions of the highly ABA-induced clade a protein phosphatase 2Cs. Plant Physiol. 2012;160(1):379–95. https://doi.org/10.1104/pp.112.202408. es_ES
dc.description.references Lee SC, Lan W-Z, Kim B-G, Li L, Cheong YH, Pandey GK, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci. 2007;104(40):15959–64. https://doi.org/10.1073/pnas.0707912104. es_ES
dc.description.references Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science. 1999;285:1256–8. https://doi.org/10.1126/science.285.5431.1256. es_ES
dc.description.references Navarro JM, Garrido C, Martínez V, Carvajal M. Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes. Plant Growth Regul. 2003;41(3):237–45. https://doi.org/10.1023/B:GROW.0000007515.72795.c5. es_ES
dc.description.references Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, et al. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil. 2002;247(1):93–105. https://doi.org/10.1023/A:1021119414799. es_ES
dc.description.references Chakauya E, Coxon KM, Whitney HM, Ashurst JL, Abell C, Smith AG. Pantothenate biosynthesis in higher plants: advances and challenges. Physiol Plant. 2006;126(3):319–29. https://doi.org/10.1111/j.1399-3054.2006.00683.x. es_ES
dc.description.references Huang L, Pyc M, Alseekh S, McCarty DR, de Crécy-Lagard V, Gregory JF, et al. A plastidial pantoate transporter with a potential role in pantothenate synthesis. Biochem J. 2018;475(4):813–25. https://doi.org/10.1042/BCJ20170883. es_ES
dc.description.references Abo-Ogiala A, Carsjens C, Diekmann H, Fayyaz P, Herrfurth C, Feussner I, et al. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J Plant Physiol. 2014;171(3-4):250–9. https://doi.org/10.1016/j.jplph.2013.08.003. es_ES
dc.description.references Küfner I, Koch W. Stress regulated members of the plant organic cation transporter family are localized to the vacuolar membrane. BMC Res Notes. 2008;1(1):43. https://doi.org/10.1186/1756-0500-1-43. es_ES
dc.description.references Jacques F, Rippa S, Perrin Y. Physiology of L-carnitine in plants in light of the knowledge in animals and microorganisms. Plant Sci. 2018;274:432–40. https://doi.org/10.1016/j.plantsci.2018.06.020. es_ES
dc.description.references Stepien P, Johnson GN. Contrasting responses of photosynthesis to salt stress in the Glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative Electron sink. Plant Physiol. 2009;149(2):1154–65. https://doi.org/10.1104/pp.108.132407. es_ES
dc.description.references Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E. Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci. 2006;103(15):6061–6. https://doi.org/10.1073/pnas.0501720103. es_ES
dc.description.references You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 2015;6:1–15. https://doi.org/10.3389/fpls.2015.01092. es_ES
dc.description.references Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants. 2019;8(6):151. https://doi.org/10.3390/plants8060151. es_ES
dc.description.references Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, et al. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol. 2009;166(2):146–56. https://doi.org/10.1016/j.jplph.2008.03.002. es_ES
dc.description.references Saleethong P, Sanitchon J, Kong-ngern K, Theerakulp P. Pretreatment with Spermidine reverses inhibitory effects of salt stress in two Rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian J Plant Sci. 2011;10(4):245–54. https://doi.org/10.3923/ajps.2011.245.254. es_ES
dc.description.references Khoshbakht D, Asghari MR, Haghighi M. Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica. 2018;56(4):1313–25. https://doi.org/10.1007/s11099-018-0839-z. es_ES
dc.description.references Roychoudhury A, Basu S, Sengupta DN. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol. 2011;168(4):317–28. https://doi.org/10.1016/j.jplph.2010.07.009. es_ES
dc.description.references Szymańska KP, Polkowska-Kowalczyk L, Lichocka M, Maszkowska J, Dobrowolska G. SNF1-Related Protein Kinases SnRK2.4 and SnRK2.10 Modulate ROS Homeostasis in Plant Response to Salt Stress. Int J Mol Sci. 2019;20:143. https://doi.org/10.3390/ijms20010143. es_ES
dc.description.references McCready RM, Guggolz J, Silviera V, Owens HS. Determination of starch and amylose in vegetables application to peas. Anal Chem. 1950;22(9):1156–8.  https://doi.org/10.1021/ac60045a016. es_ES
dc.description.references Koç E, İşlek C, Üstün AS. Effect of cold on protein, Proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. GU J Sci. 2010;23:1–6 http://gujs.gazi.edu.tr/article/view/1060000016. es_ES
dc.description.references Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci. 1997;51:121–4. es_ES
dc.description.references Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 2000;151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1. es_ES
dc.description.references Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. 39:205–7. https://doi.org/10.1007/BF00018060. es_ES
dc.description.references Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, et al. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 2010;38(suppl_2):W210–3. https://doi.org/10.1093/nar/gkq388. es_ES
dc.description.references Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211. es_ES
dc.description.references Bin WS, Wei LK, Ping DW, Li Z, Wei G, Bing LJ, et al. Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Mol Breed. 2012;30(3):1393–400. https://doi.org/10.1007/s11032-012-9726-7. es_ES
dc.description.references Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun. 2011;416(1-2):24–30. https://doi.org/10.1016/j.bbrc.2011.10.105. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem