Mostrar el registro sencillo del ítem
dc.contributor.author | Cebrian, Juan M. | es_ES |
dc.contributor.author | Imbernón, Baldomero | es_ES |
dc.contributor.author | Soto, Jesús | es_ES |
dc.contributor.author | Cecilia-Canales, José María | es_ES |
dc.date.accessioned | 2022-05-03T18:04:12Z | |
dc.date.available | 2022-05-03T18:04:12Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182378 | |
dc.description.abstract | [EN] Clustering algorithms are one of the most widely used kernels to generate knowledge from large datasets. These algorithms group a set of data elements (i.e., images, points, patterns, etc.) into clusters to identify patterns or common features of a sample. However, these algorithms are very computationally expensive as they often involve the computation of expensive fitness functions that must be evaluated for all points in the dataset. This computational cost is even higher for fuzzy methods, where each data point may belong to more than one cluster. In this paper, we evaluate different parallelisation strategies on different heterogeneous platforms for fuzzy clustering algorithms typically used in the state-of-the-art such as the Fuzzy C-means (FCM), the Gustafson-Kessel FCM (GK-FCM) and the Fuzzy Minimals (FM). The experimental evaluation includes performance and energy trade-offs. Our results show that depending on the computational pattern of each algorithm, their mathematical foundation and the amount of data to be processed, each algorithm performs better on a different platform. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and by the Spanish "Agencia Estatal de Investigacion" under grant PID2020-112827GB-I00 /AEI/ 10.13039/501100011033, and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Clustering algorithms | es_ES |
dc.subject | Performance evaluation | es_ES |
dc.subject | GPU computing | es_ES |
dc.subject | Energy-efficiency | es_ES |
dc.subject | Vector architectures | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Evaluation of Clustering Algorithms on HPC Platforms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math9172156 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana//AICO%2F2020%2F302/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6389-5-AR//PLANIFICACIÓN Y GESTIÓN DE RECURSOS HÍDRICOS A PARTIR DE ANÁLISIS DE DATOS DE IOT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Cebrian, JM.; Imbernón, B.; Soto, J.; Cecilia-Canales, JM. (2021). Evaluation of Clustering Algorithms on HPC Platforms. Mathematics. 9(17):1-20. https://doi.org/10.3390/math9172156 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math9172156 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\447683 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.contributor.funder | Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana | es_ES |
upv.costeAPC | 1298,47 | es_ES |