- -

How to Simulate Outliers with the Desired Properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

How to Simulate Outliers with the Desired Properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Cebrián, A. es_ES
dc.contributor.author Arteaga, Francisco es_ES
dc.contributor.author Folch-Fortuny, Abel es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2022-05-10T18:06:04Z
dc.date.available 2022-05-10T18:06:04Z
dc.date.issued 2021-05-15 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182472
dc.description.abstract [EN] Deviating multivariate observations are used typically to test the performance of outlier detection methods. Yet, the generation of outlying cases itself usually appears as a secondary methodological step in methods comparison. In the literature, outliers are defined using certain distribution parameters which differ from those of the clean or reference data. However, these parameters change among authors, leading to a lack of a standard and measurable definition of the characteristics simulated outliers. This makes the comparison between methods hard and its results dependent on the procedure followed to simulate the data. In order to set a standard procedure, a framework to simulate outliers is defined here. Since it is based on certain specifications for both the Squared Prediction Error (SPE) and Hotelling's T2 statistics from a Principal Component Analysis (PCA) model, tuning them becomes a simple and efficient task. This procedure has been implemented in a set of Matlab functions. es_ES
dc.description.sponsorship Financial support was granted by the Research and Development Support Programme PAID-01-17 of the UPV and also by the Spanish Ministry of Economy and Competitiveness under the project DPI2017-82896-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Outliers es_ES
dc.subject Squared prediction error es_ES
dc.subject Hotelling's T^2 es_ES
dc.subject Simulation es_ES
dc.subject PCA es_ES
dc.subject Matlab es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title How to Simulate Outliers with the Desired Properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2021.104301 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-17//Contratos Pre-Doctorales UPV 2017- Subprograma 1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation González-Cebrián, A.; Arteaga, F.; Folch-Fortuny, A.; Ferrer, A. (2021). How to Simulate Outliers with the Desired Properties. Chemometrics and Intelligent Laboratory Systems. 212:1-16. https://doi.org/10.1016/j.chemolab.2021.104301 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemolab.2021.104301 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 212 es_ES
dc.relation.pasarela S\432230 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem