Mostrar el registro sencillo del ítem
dc.contributor.author | Giménez Caminero, Maria Estela | es_ES |
dc.contributor.author | Castañeda, Laura | es_ES |
dc.contributor.author | Pineda Chaza, Benito José | es_ES |
dc.contributor.author | Pan, Irvin L. | es_ES |
dc.contributor.author | Moreno Ferrero, Vicente | es_ES |
dc.contributor.author | Angosto, Trinidad | es_ES |
dc.contributor.author | Lozano, Rafael | es_ES |
dc.date.accessioned | 2022-05-11T18:06:28Z | |
dc.date.available | 2022-05-11T18:06:28Z | |
dc.date.issued | 2016-07 | es_ES |
dc.identifier.issn | 0167-4412 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182548 | |
dc.description.abstract | [EN] Within the tomato MADS-box gene family, TOMATO AGAMOUS1 (TAG1) and ARLEQUIN/TOMATO AGAMOUS LIKE1 (hereafter referred to as TAGL1) are, respectively, members of the euAG and PLE lineages of the AGAMOUS clade. They perform crucial functions specifying stamen and carpel development in the flower and controlling late fruit development. To gain insight into the roles of TAG1 and TAGL1 genes and to better understand their functional redundancy and diversification, we characterized single and double RNAi silencing lines of these genes and analyzed expression profiles of regulatory genes involved in reproductive development. Double RNAi lines did show cell abnormalities in stamens and carpels and produced extremely small fruit-like organs displaying some sepaloid features. Expression analyses indicated that TAG1 and TAGL1 act together to repress fourth whorl sepal development, most likely through the MACROCALYX gene. Results also proved that TAG1 and TAGL1 have diversified their functions in fruit development: while TAG1 controls placenta and seed formation, TAGL1 participates in cuticle development and lignin biosynthesis inhibition. It is noteworthy that both TAG1 and double RNAi plants lacked seed development due to abnormalities in pollen formation. This seedless phenotype was not associated with changes in the expression of B-class stamen identity genes Tomato MADS-box 6 and Tomato PISTILLATA observed in silencing lines, suggesting that other regulatory factors should participate in pollen formation. Taken together, results here reported support the idea that both redundant and divergent functions of TAG1 and TAGL1 genes are needed to control tomato reproductive development. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness (Grant Numbers AGL2012-40150-C03-01, AGL2012-40150-C03-02 and AGL2015-64991-C3-1-R); and the European Commission through the JAE-Doc Program of the Spanish National Research Council (CSIC) (Grant Number AGL2012-40150-C03-01 to B.P.). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Plant Molecular Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Functional diversification | es_ES |
dc.subject | Redundancy | es_ES |
dc.subject | Reproductive development | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | TAG1 | es_ES |
dc.subject | TAGL1 | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11103-016-0485-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-64991-C3-1-R/ES/GENOMICA FUNCIONAL Y MEJORA GENETICA DE LA PRODUCTIVIDAD DE TOMATE: IMPORTANCIA AGRONOMICA DEL BALANCE DESARROLLO-ESTRES ABIOTICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C03-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2012-40150-C03-01//Identificación, etiquetado y análisis funcional de genes implicados en el cuajado del fruto de tomate y tolerancia a la salinidad en especies silvestres relacionadas/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Giménez Caminero, ME.; Castañeda, L.; Pineda Chaza, BJ.; Pan, IL.; Moreno Ferrero, V.; Angosto, T.; Lozano, R. (2016). TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology. 91(4-5):513-531. https://doi.org/10.1007/s11103-016-0485-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11103-016-0485-4 | es_ES |
dc.description.upvformatpinicio | 513 | es_ES |
dc.description.upvformatpfin | 531 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 4-5 | es_ES |
dc.identifier.pmid | 27125648 | es_ES |
dc.relation.pasarela | S\327313 | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMIA Y EMPRESA | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Adamczyk BJ, Fernandez DE (2009) MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol 149:1713–1723 | es_ES |
dc.description.references | Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SJ, Burgeff C, Ditta GS, Vergara F, Yanofsky MF (2000a) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466 | es_ES |
dc.description.references | Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martinez-Castilla L, Yanofsky MF (2000b) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333 | es_ES |
dc.description.references | Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489 | es_ES |
dc.description.references | Boss P, Vivier M, Matsumoto S, Dry I, Thomas M (2001) A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol 45:541–553 | es_ES |
dc.description.references | Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52 | es_ES |
dc.description.references | Bowman JL, Smyth DR, Meyerowitzt EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20 | es_ES |
dc.description.references | Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell 72:85–95 | es_ES |
dc.description.references | Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A (2003) Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex Plant Reprod 15:311–320 | es_ES |
dc.description.references | Busi MV, Bustamante C, D’Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E (2003) MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52:801–815 | es_ES |
dc.description.references | Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493 | es_ES |
dc.description.references | Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512 | es_ES |
dc.description.references | Coen E, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37 | es_ES |
dc.description.references | Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034 | es_ES |
dc.description.references | di Martino G, Pan I, Emmanuel E, Levy A, Irish V (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18:1833–1845 | es_ES |
dc.description.references | Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611 | es_ES |
dc.description.references | Fourquin C, Ferrándiz C (2012) Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. Plant J 71:990–1001 | es_ES |
dc.description.references | Geuten K, Irish V (2010) Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell 22:2562–2578 | es_ES |
dc.description.references | Gimenez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R et al (2015) Transcriptional activity of the MADS box ARLEQUIN/TOMATO AGAMOUS-LIKE1 gene is required for cuticle development of tomato fruit. Plant Physiol 168(3):1036–1048 | es_ES |
dc.description.references | Gimenez E, Pineda B, Capel J, Antón MT, Atarés A, Perez-Martin F, Garcia-Sogo B, Angosto T, Moreno V, Lozano R (2010) Functional analysis of the Arlequin mutant corroborates the essential role of the ARLEQUIN/TAGL1 gene during reproductive development of tomato. Plos One 5:e14427 | es_ES |
dc.description.references | Gómez P, Jamilena M, Capel J, Zurita S, Angosto T, Lozano R (1999) Stamenless, a tomato mutant with homeotic conversions in petals and stamens. Planta 209:172–179 | es_ES |
dc.description.references | Gómez-Mena G, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438 | es_ES |
dc.description.references | Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214–224 | es_ES |
dc.description.references | Heijmans K, Ament K, Rijpkema AS, Zethof J, Wolters-Arts M, Gerats T, Vandenbussche M (2012) Redefining C and D in the petunia ABC. Plant Cell 24:2305–2317 | es_ES |
dc.description.references | Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the Moss Physcomitrella patens. Mol Biol Evol 19:801–814 | es_ES |
dc.description.references | Hoffman NE, Ko K, Milkowski D, Pichersky E (1991) Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Mo1 Biol 17:1189–1201 | es_ES |
dc.description.references | Ishida BK, Jenkins SM, Say B (1998) Induction of AGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro. Plant Mol Biol 36:733–739 | es_ES |
dc.description.references | Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095 | es_ES |
dc.description.references | Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360 | es_ES |
dc.description.references | Joubes J, Phan TH, Just D, Rothan C, Bergounioux C, Raymond P et al (1999) Molecular and biochemical characterization of the involvement of cyclin-dependent kinase a during the early development of tomato fruit. Plant Physiol 121:857–869 | es_ES |
dc.description.references | Joubes J, Walsh D, Raymond P, Chevalier C (2000) Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta 211:430–439 | es_ES |
dc.description.references | Kapoor M, Tsuda S, Tanaka Y, Mayama T, Okuyama Y, Tsuchimoto S, Takatsuji H (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as reveal by its loss of function. Plant J 32:115–127 | es_ES |
dc.description.references | Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59 | es_ES |
dc.description.references | Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20:1963–1977 | es_ES |
dc.description.references | Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023 | es_ES |
dc.description.references | Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of petal and stamen development, gene duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783 | es_ES |
dc.description.references | Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L (2008) Interaction study of MADS-domain proteins in tomato. J Exp Bot 59:2253–2265 | es_ES |
dc.description.references | Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770 | es_ES |
dc.description.references | Lozano R, Angosto T, Gomez P, Payán C, Capel J, Huijser P, Salinas J, Martínez-Zapater JM (1998) Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-box genes. Plant Physiol 117:91–100 | es_ES |
dc.description.references | Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277 | es_ES |
dc.description.references | Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP (2008) Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiol Plant 132:526–537 | es_ES |
dc.description.references | Meissner R, Jacobson Y, Melame S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472 | es_ES |
dc.description.references | Mellway RD, Lund ST (2013) Interaction analysis of grapevine MIKCc-type MADS transcription factors and heterologous expression of putative véraison regulators in tomato. J Plant Physiol 170:1424–1433 | es_ES |
dc.description.references | Ng M, Yanofsky MF (2000) Three ways to learn the ABCs. Curr Opin Plant Biol 3:47–52 | es_ES |
dc.description.references | Pan IL, McQuinn R, Giovannoni JJ, Irish VF (2010) Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. J Exp Bot 61:1795–1806 | es_ES |
dc.description.references | Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756 | es_ES |
dc.description.references | Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88 | es_ES |
dc.description.references | Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarz-Sommer Z, Lifschitz E (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1:255–266 | es_ES |
dc.description.references | Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6:163–173 | es_ES |
dc.description.references | Quinet M, Bataille G, Dobrev PI, Capel C, Gómez P, Capel J, Lutts S, Motyka V, Angosto T, Lozano R (2014) Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3 gene. J Exp Bot 65:2243–2256 | es_ES |
dc.description.references | Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:1–23 | es_ES |
dc.description.references | Tadiello A, Pavanello A, Zanin D, Caporali E, Colombo L, Rotino GL, Trainotti L, Casadoro G (2009) A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. J Exp Bot 60:651–661 | es_ES |
dc.description.references | Tani E, Polidoros AN, Tsaftaris AS (2007) Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27:649–659 | es_ES |
dc.description.references | Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149 | es_ES |
dc.description.references | Verelst W, Saedler H, Münster T (2007a) MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143:447–460 | es_ES |
dc.description.references | Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T (2007b) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8:R249 | es_ES |
dc.description.references | Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062 | es_ES |
dc.description.references | Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346 | es_ES |
dc.description.references | Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39 | es_ES |