Mostrar el registro sencillo del ítem
dc.contributor.author | Rocher-Morant, Javier | es_ES |
dc.contributor.author | Parra-Boronat, Lorena | es_ES |
dc.contributor.author | Jimenez, Jose M. | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Basterrechea-Chertudi, Daniel Andoni | es_ES |
dc.date.accessioned | 2022-05-11T18:06:40Z | |
dc.date.available | 2022-05-11T18:06:40Z | |
dc.date.issued | 2021-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182554 | |
dc.description.abstract | [EN] In irrigation ponds, the excess of nutrients can cause eutrophication, a massive growth of microscopic algae. It might cause different problems in the irrigation infrastructure and should be monitored. In this paper, we present a low-cost sensor based on optical absorption in order to determine the concentration of algae in irrigation ponds. The sensor is composed of 5 LEDs with different wavelengths and light-dependent resistances as photoreceptors. Data are gathered for the calibration of the prototype, including two turbidity sources, sediment and algae, including pure samples and mixed samples. Samples were measured at a different concentration from 15 mg/L to 4000 mg/L. Multiple regression models and artificial neural networks, with a training and validation phase, are compared as two alternative methods to classify the tested samples. Our results indicate that using multiple regression models, it is possible to estimate the concentration of alga with an average absolute error of 32.0 mg/L and an average relative error of 11.0%. On the other hand, it is possible to classify up to 100% of the samples in the validation phase with the artificial neural network. Thus, a novel prototype capable of distinguishing turbidity sources and two classification methodologies, which can be adapted to different node features, are proposed for the operation of the developed prototype. | es_ES |
dc.description.sponsorship | This work is partially funded by the Ministerio de Educacion, Cultura y Deporte through the"Ayudas para contratacion pre-doctoral de Formacion del Profesorado Universitario FPU (Convocatoria 2016)" grant number FPU16/05540 and by the Conselleria de Educacion, Cultura y Deporte through the "Subvenciones para la contratacion de personal investigador en fase postdoctoral", grant number APOSTD/2019/04. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Turbidity | es_ES |
dc.subject | Sediment | es_ES |
dc.subject | Alga | es_ES |
dc.subject | Light absorption | es_ES |
dc.subject | Water quality | es_ES |
dc.subject | Irrigation channel | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Development of a Low-Cost Optical Sensor to Detect Eutrophication in Irrigation Reservoirs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s21227637 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F05540/ES/FPU16%2F05540/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F04//Contrato posdoctoral GVA-Parra Boronat. Proyecto: Ensayos con combinaciones de cespitosas más sostenibles para jardinería pública/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F05540//FPU16/05540/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Rocher-Morant, J.; Parra-Boronat, L.; Jimenez, JM.; Lloret, J.; Basterrechea-Chertudi, DA. (2021). Development of a Low-Cost Optical Sensor to Detect Eutrophication in Irrigation Reservoirs. Sensors. 21(22):1-20. https://doi.org/10.3390/s21227637 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s21227637 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 34833712 | es_ES |
dc.identifier.pmcid | PMC8619190 | es_ES |
dc.relation.pasarela | S\458841 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |