Resumen:
|
[EN] Pre-chamber spark-ignition (PCSI), either fueled or non-fueled, is a leading concept with the potential to enable diesel-like efficiency in medium-duty (MD) and heavy-duty (HD) natural gas (NG) engines. However, the ...[+]
[EN] Pre-chamber spark-ignition (PCSI), either fueled or non-fueled, is a leading concept with the potential to enable diesel-like efficiency in medium-duty (MD) and heavy-duty (HD) natural gas (NG) engines. However, the inadequate scientific base and simulation tools to describe/predict the underlying processes governing PCSI systems is one of the key barriers to market penetration of PCSI for MD/HD NG engines. To this end, experiments were performed in a heavy-duty, optical, single-cylinder engine fitted with an active fueled PCSI module. The spatial and temporal progress of ignition and subsequent combustion of lean-burn natural gas using PCSI system were studied using optical diagnostic imaging and heat release analysis based on main-chamber and pre-chamber pressure measurements.
Optical diagnostics involving simultaneous infrared (IR) and high-speed (30 kfps) broadband and filtered OH* chemiluminescence imaging are used to probe the combustion process. Following the early pressure rise in the pre-chamber, IR imaging reveals initial ejection of unburnt fuel-air mixture from the pre chamber into the main-chamber. Following this, the pre-chamber gas jets exhibit chemical activity in the vicinity of the pre-chamber region followed by a delayed spread in OH* chemiluminescence, as they continue to penetrate further into the main-chamber. The OH* signal progress radially until the pre-chamber jets merge, which sets up the limit to a first stage, jet-momentum driven, mixing-controlled (temperature field) premixed combustion. This is then followed by the subsequent deceleration of the pre-chamber jets, caused by the decrease in the driving pressure difference (AP) as well as charge entrainment, resulting in a flame front evolution, where mixing is not the only driver. Chemical-kinetic calculations probe the possibility of flame propagation or sequential auto-ignition in the second stage of combustion. Finally, key phenomenological features are then summarized so as to provide fundamental insights on the complex underlying fluid-mechanical and chemical-kinetic processes that govern the ignition and subsequent combustion of natural gas near lean-limits in high-efficiency lean-burn natural gas engines employing PCSI system.
[-]
|
Agradecimientos:
|
This research was sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) . Optical engine experiments were conducted at the Combustion Re-search Facility of Sandia National ...[+]
This research was sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) . Optical engine experiments were conducted at the Combustion Re-search Facility of Sandia National Laboratories in Livermore, CA. Sandia National Laboratories is a multi-mission laboratory man-aged and operated by National Technology and Engineering So-lutions of Sandia, LLC., a wholly owned subsidiary of Honey-well International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration (NNSA) under contract DE-NA0003525. We gratefully acknowledge the contributions of Keith Penney and Dave Cicone for their assistance in developing research tools and maintaining the optical engine. Jose M. Garcia-Oliver ac-knowledges the support of the Generalitat Valenciana government in Spain through Grant #Best/2019/176 during his scientific visit to the Combustion Research Facility.
[-]
|