Mostrar el registro sencillo del ítem
dc.contributor.author | Gencheva, Deyana Gencheva | es_ES |
dc.contributor.author | Velikov, Krasimir Petrov | es_ES |
dc.contributor.author | Veleva, Petya Marinova | es_ES |
dc.coverage.spatial | east=-119.4179324; north=36.778261; name=California, Estats Units d'Amèrica | es_ES |
dc.date.accessioned | 2022-05-18T12:38:03Z | |
dc.date.available | 2022-05-18T12:38:03Z | |
dc.date.issued | 2022-03-31 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/182693 | |
dc.description.abstract | [EN] The objective of the present study was to evaluate the influence of the genotypes of two single nucleotide polymorphisms (SNPs) c.78C>T located in the growth hormone gene (GH) and c.106C>G in the growth hormone receptor gene (GHR) on individual body weight (IBW) during the growing period at 35, 70 and 90 d of age on a total of 107 weaned Californian breed rabbits. The restriction fragments obtained revealed that 74.8% of the rabbits carrying c.78C>T SNP and 52.3% of the rabbits carrying c.106C>G SNP were heterozygous, which indicated a moderate level of genetic diversity in this Californian population. Association analysis based on a single-gene approach revealed that c.78C>T polymorphism in the GH gene had a significant effect (P<0.05) on the weight at 70 and 90 d of age. The highest IBW (2530.4±66.6 g) was observed in rabbits carrying the c.78C>T TT genotype, and detected individuals were significantly affected by the dominance effect. Significant differences were observed between individuals with homozygous c.106C>G CC genotype and those with heterozygous CG genotype. The highest IBW (2462.0±198.3 g) was observed in rabbits carrying the c.106C>G CC genotype and detected individuals were significantly affected by the additive effect. A total of nine combined genotypes of c.78C>T and c.106C>G SNPs was found in the study, of which only four major groups (CT/CC, CC/CG, CT/CG, and CT/GG) were concerned in the diplotype analysis. Significant differences were observed between individuals with CT/CC and CC/CG genotype combinations, and between those with the CC/CG and CT/GG diplotypes. However, the highest IBW at 90 d of age (2447.2±213.8 g) was observed in rabbits carrying the CT/CC genotype combinations. The highest coefficient of determination found for individual body weight at 90 d of age (R2=10.8%) indicated a high effect of genotype combinations. In conclusion, the results obtained suggested that c.78C>T of GH gene and c.106C>G of GHR gene could be useful candidate genes to improve growth performance in Californian rabbits with potential application in rabbit breeding programmes. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | World Rabbit Science | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Californian rabbits | es_ES |
dc.subject | Growth hormone gene | es_ES |
dc.subject | Growth hormone receptor gene | es_ES |
dc.subject | SNPs | es_ES |
dc.subject | PCR-RFLP | es_ES |
dc.subject | Body weight | es_ES |
dc.title | Association analysis of nucleotide polymorphisms in growth hormone (GH) and its receptor (GHR) with body weight in Californian rabbits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/wrs.2022.13127 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gencheva, DG.; Velikov, KP.; Veleva, PM. (2022). Association analysis of nucleotide polymorphisms in growth hormone (GH) and its receptor (GHR) with body weight in Californian rabbits. World Rabbit Science. 30(1):95-102. https://doi.org/10.4995/wrs.2022.13127 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2022.13127 | es_ES |
dc.description.upvformatpinicio | 95 | es_ES |
dc.description.upvformatpfin | 102 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-8886 | |
dc.relation.pasarela | OJS\13127 | es_ES |
dc.description.references | Bai W.L., Zhou C.Y., Ren Y., Yin R.H., Jiang W.Q., Zhao S.J., Zhang S.C., Zhang B.L., Luo G.B., Zhao Z.H. 2011. Characterization of the GHR gene genetic variation in Chinese indigenous goat breeds. Mol Biol Rep., 38: 471-479. https://doi.org/10.1007/s11033-010-0130-2 | es_ES |
dc.description.references | Baselga M. 2004. Genetic improvement of meat rabbits. Programmes and diffusion. In Proc.: 8th World Rabbit Congress, September 7-10, 2004, Pueblo, Mexico, 1-13. | es_ES |
dc.description.references | Dekkers J.C. 2004. Commercial application of marker- and geneassisted selection in livestock: Strategies and lessons, J. Anim. Sci., 82, 13: 313-328. | es_ES |
dc.description.references | Deng X.S., Wan J., Chen S.Y., Wang Y., Lai S.J., Jiang M.S., Xu M. 2008. The correlations between polymorphism of growth hormone receptor gene and butcher traits in rabbit. Yi chuan. Hereditas, 30: 1427-1432. https://doi.org/10.3724/SP.J.1005.2008.01427 | es_ES |
dc.description.references | Dimitrova I., Dimitrov T., Teneva A., Tzvetkova H. 2008. Rabbit production in Bulgaria. Biotech. Anim. Husbandry, 24: 1-2: 149-154. https://doi.org/10.2298/BAH0802149D | es_ES |
dc.description.references | EASRAB. Livestock Breeds in the Republic of Bulgaria Executive Agency for Selection and Reproduction in Animal Breeding, Catalogue, 5th ed. In: Nikolov V. (editor), Sofia, Bulgaria; 2017. pp. 80-81. | es_ES |
dc.description.references | El-Sabrout K., Aggag S.A. 2017. Associations between single nucleotide polymorphisms in multiple candidate genes and body weight in rabbits. Vet. World, 10: 136-139. https://doi.org/10.14202/vetworld.2017.136-139 | es_ES |
dc.description.references | Fontanesi L., Dall’Olio S., Spaccapaniccia E., Scotti E., Fornasini D., Frabetti A., Russo V. 2012. Asingle nucleotide polymorphism in the rabbit growth hormone (GH1) gene is associated with market weight in a commercial rabbit population. Livest. Sci., 147: 84-88. https://doi.org/10.1016/j.livsci.2012.04.006 | es_ES |
dc.description.references | Fontanesi L., Sparacino G., Utzeria V.J., Scottia E., Fornasini D., Dall’Olioa S., Frabetti A. 2016. Identification of Polymorphisms in the Rabbit Growth Hormone Receptor (GHR) Gene and Association with Finishing Weight in a Commercial Meat Rabbit Line. Anim. Biotechnol., 27: 77-83. https://doi.org/10.1080/10495398.2015.1101697 | es_ES |
dc.description.references | Fontanesi L., Tazzoli M., Scotti E., Russo V. 2008. Analysis of candidate genes for meat production traits in domestic rabbit breeds. In Proc.: 9th World Rabbit Congress, June 10-13, 2008, Verona, Italy, 79-84. | es_ES |
dc.description.references | Frank S.J. 2001. Growth hormone signalling and its regulation: preventing too much of a good thing. Growth Horm IGF. Res., 11: 201-212. https://doi.org/10.1054/ghir.2001.0237 | es_ES |
dc.description.references | Gencheva D., Georgieva S., Velikov K., Koynarski T., Tanchev S. 2017. Single nucleotide polymorphism of the Growth Hormone Receptor (GHR) encoding gene in Oryctolagus cuniculus. J. BioSci. Biotechnol., 6: 197-201. | es_ES |
dc.description.references | Grigorov I. 2005. How to grow rabbits. Zemizdat, Sofia. Helal M.M. 2019. Association between growth hormone receptor gene polymorphism and body weight in growing rabbits. Adv. Anim. Vet. Sci., 7: 994-998. https://doi.org/10.17582/journal.aavs/2019/7.11.994.998 | es_ES |
dc.description.references | Herrington J., Carter-Su C. 2001. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab., 1: 252-257. https://doi.org/10.1016/S1043-2760(01)00423-4 | es_ES |
dc.description.references | Hristova D., Tanchev S., Velikov K., Gonchev P., Georgieva S. 2017. Rabbit Growth Hormone and Myostatin Gene Polymorphisms. J. Agri. Res., 2: 1-6. https://doi.org/10.23880/OAJAR-16000133 | es_ES |
dc.description.references | Hristova D.G., Tanchev S.G., Velikov K.P., Gonchev P.G., Georgieva S.J. 2018. Single nucleotide polymorphism of the growth hormone (GH) encoding gene in inbred and outbred domestic rabbits. World Rabbit Sci., 26, 1: 49-55. https://doi.org/10.4995/wrs.2018.7211 | es_ES |
dc.description.references | Hussein B., Abdel-Kafy E.M., Abdel-Ghany S.M., Gamal A.Y., Badawi Y.M. 2015. Single nucleotide polymorphism in growth hormone gene are associated with some performance traits in rabbit. Int. J. Biol. Pharm. Allied Sci., 4: 490-504. Labate J. 2000. Software for population genetic analyses of molecular marker data. Crop Sci., 40: 1521-1528. https://doi.org/10.2135/cropsci2000.4061521x | es_ES |
dc.description.references | Leung D.W. Spencer S.A., Cachianes G., Hammonds R.G., Collins C., Henzel W.J., Barnard, R., Waters M.J., Wood W.I. 1987. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature, 330: 537-543. https://doi.org/10.1038/330537a0 | es_ES |
dc.description.references | Marinov B., Grigorov I., Gurov B., Peshev R. 2009. Raising rabbits for meat. Sofia, pp. 1-334. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321 | es_ES |
dc.description.references | Polasik D., Kmiec M., Liefers S.,Terman A. 2005. Single nucleotide polymorphisms in exon 10 of the chinchilla growth hormone receptor (GHR) gene. J. Appl Genet. 46: 403-406. | es_ES |
dc.description.references | Ramadan S., Manaa E., El-Attrony M., EL Nagar A. 2020. Association of growth hormone (GH), insulin-like growth factor 2 (IGF2) and progesterone receptor (PGR) genes with some productive traits in Gabali rabbits. World Rabbit Sci., 28: 135-144. | es_ES |
dc.description.references | https://doi.org/10.4995/wrs.2020.12610 | es_ES |
dc.description.references | Ruane J., Colleau J. J. 1996. Marker-assisted selection for a sex-limited character in a nucleus breeding population. J. Dairy Sci., 79: 1666-1678. https://doi.org/10.3168/jds.S0022-0302(96)76531-1 | es_ES |
dc.description.references | Russo V., Fontanesi L., Scotti E., Beretti F., Davoli R., Nanni Costa L., Buttazzoni L. 2008. Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs. J. Anim. Sci., 86: 3300-3314. https://doi.org/10.2527/jas.2008-0920 | es_ES |
dc.description.references | Sahwan F.M., El-Sheik A.I., Sharaf M.M., El-Nahas A.F. 2014. Genetic Polymorphism in Growth hormone receptor Gene (GHR) and its Relationship with Growth Trait in Pure and Hybrid Rabbit Breeds. Alex. J. Vet. Sci., 43: 1. https://doi.org/10.5455/ajvs.165197 | es_ES |
dc.description.references | SPSS Statistics 17.0.0 WinWrap Basic, Copyright 1993-2007 Polar Engineering and Consulting, https://www.ibm.com/products/spss-statistics. | es_ES |
dc.description.references | Stuber CW, Edwards MD, Wendel JF. 1987. Molecular-marker facilitated investigations of quantitative trait loci in maize. II Factors influencing yield and its component traits. Crop Sci., 27: 639-648. https://doi.org/10.2135/cropsci1987.0011183X002700040006x | es_ES |
dc.description.references | VanderKuur J.A., Wang X., Zhang L., Campbell G.S., Allevato G., Billestrup N., Carter-Su C. 1994. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase. J. Biol. Chem., 269: 21709-21717. | es_ES |
dc.description.references | https://doi.org/10.1016/S0021-9258(17)31863-X | es_ES |
dc.description.references | Wallis O. C., Wallis M. 1995. Cloning and characterisation of the rabbit growth hormone-encoding gene. Gene, 163: 253-256. | es_ES |
dc.description.references | https://doi.org/10.1016/0378-1119(95)00429-A | es_ES |
dc.description.references | Yeh F.C., Yang R.C., Boyle T. 1999. POPGENE. Microsoft Windows-Based Freeware for Population Genetic Analysis. Release 1.31. University of Alberta, Edmonton. | es_ES |
dc.description.references | Zhang W. X., Zhang G. W., Peng J., Lai, S. J. 2012. The polymorphism of GHR gene associated with the growth and carcass traits in three rabbit breeds. In Proc.: 10th World Rabbit Congress, Egypt, September, 3-6, pp 75-78. | es_ES |