- -

Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flegar, Goran es_ES
dc.contributor.author Anzt, Hartwig es_ES
dc.contributor.author Cojean, Terry es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2022-05-18T18:02:58Z
dc.date.available 2022-05-18T18:02:58Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 0098-3500 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182695
dc.description © ACM, 2021. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Mathematical Software, Volume 47, Issue , June 2021, http://doi.acm.org/10.1145/3441850 es_ES
dc.description.abstract [EN] The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator-like a preconditioner-in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings. es_ES
dc.description.sponsorship H. Anzt and T. Cojean were supported by the "Impuls und Vernetzungsfond of the Helmholtz Association" under grant VH-NG-1241. G. Flegar and E. S. Quintana-Orti were supported by project TIN2017-82972-R of the MINECO and FEDER and the H2020 EU FETHPC Project 732631 "OPRECOMP". This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. The authors want to acknowledge the access to the Piz Daint supercomputer at the Swiss National Supercomputing Centre (CSCS) granted under the project #d100 and the Summit supercomputer at the Oak Ridge National Lab (ORNL). es_ES
dc.language Inglés es_ES
dc.publisher Association for Computing Machinery es_ES
dc.relation.ispartof ACM Transactions on Mathematical Software es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sparse linear algebra es_ES
dc.subject Adaptive precision es_ES
dc.subject Preconditioning es_ES
dc.subject Block-Jacobi es_ES
dc.subject Krylov solvers es_ES
dc.subject GPU es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1145/3441850 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSCS//#d100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732631/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Helmholtz Association of German Research Centers//VH-NG-1241/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//17-SC-20-SC//Exascale Computing Project/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Flegar, G.; Anzt, H.; Cojean, T.; Quintana-Ortí, ES. (2021). Adaptive Precision Block-Jacobi for High Performance Preconditioning in the Ginkgo Linear Algebra Software. ACM Transactions on Mathematical Software. 47(2):1-28. https://doi.org/10.1145/3441850 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1145/3441850 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\440322 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Swiss National Supercomputing Centre es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem