- -

On the application of artificial neural network for the development of a nonlinear aeroelastic model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the application of artificial neural network for the development of a nonlinear aeroelastic model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Quintero-Igeño, Pedro-Manuel es_ES
dc.contributor.author Cremades-Botella, Andrés es_ES
dc.date.accessioned 2022-05-20T18:05:48Z
dc.date.available 2022-05-20T18:05:48Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 1270-9638 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182750
dc.description.abstract [EN] Aeroelastic Computational Fluid Dynamics simulations have traditionally been associated to a high computational cost, making them prohibitive in a initial phase of the design. Analytic models, which may not be accurate for nonlinear aerodynamics, have traditionally been utilized in order to size those structures. Recently, some authors have proposed the use of artificial neural networks to reduce the error in the prediction of aerodynamic coefficients of bluff bodies, which have separated flow over a substantial part of its wetted surface. This article proposes a method based on neural networks for calculating the dynamic aerodynamic coefficients of a flat plate. The procedure, which is applied for different network typologies (feed-forward and long-short term memory neural networks), is, then, coupled with a structural solver in order to create an aeroelastic reduced order model. The results are compared with CFD aeroelastic simulations, showing a high reduction of computational cost (99%) without penalties in the accuracy. The instabilities are captured and the mean deformation, amplitude and frequency of the motion are predicted. In addition, the different neural network models are compared evidencing that for the aeroelastic calculation feed-forward networks are most efficient in terms of accuracy and computational cost. es_ES
dc.description.sponsorship This project has beenpartially funded by Spanish Ministry of Science, Innovation and Universities through the University Faculty Training (FPU) program with reference FPU19/02201. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Aerospace Science and Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Aeroelasticity es_ES
dc.subject Artificial neural network es_ES
dc.subject Fluid structure interaction es_ES
dc.subject Nonlinear aerodynamics es_ES
dc.subject Stall flutter es_ES
dc.subject Computational fluid dynamics es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title On the application of artificial neural network for the development of a nonlinear aeroelastic model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ast.2021.106845 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU19%2F02201//AYUDA PREDOCTORAL FPU-CREMADES BOTELLA. PROYECTO: INTERACCIÓN FLUIDO ESTRUCTURA CON APLICACIÓN A FENÓMENOS AEROELÁSTICOS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; García-Cuevas González, LM.; Quintero-Igeño, P.; Cremades-Botella, A. (2021). On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerospace Science and Technology. 115:1-15. https://doi.org/10.1016/j.ast.2021.106845 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ast.2021.106845 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.relation.pasarela S\439249 es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem