Mostrar el registro sencillo del ítem
dc.contributor.author | Torregrosa, A. J. | es_ES |
dc.contributor.author | García-Cuevas González, Luis Miguel | es_ES |
dc.contributor.author | Quintero-Igeño, Pedro-Manuel | es_ES |
dc.contributor.author | Cremades-Botella, Andrés | es_ES |
dc.date.accessioned | 2022-05-20T18:05:48Z | |
dc.date.available | 2022-05-20T18:05:48Z | |
dc.date.issued | 2021-08 | es_ES |
dc.identifier.issn | 1270-9638 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/182750 | |
dc.description.abstract | [EN] Aeroelastic Computational Fluid Dynamics simulations have traditionally been associated to a high computational cost, making them prohibitive in a initial phase of the design. Analytic models, which may not be accurate for nonlinear aerodynamics, have traditionally been utilized in order to size those structures. Recently, some authors have proposed the use of artificial neural networks to reduce the error in the prediction of aerodynamic coefficients of bluff bodies, which have separated flow over a substantial part of its wetted surface. This article proposes a method based on neural networks for calculating the dynamic aerodynamic coefficients of a flat plate. The procedure, which is applied for different network typologies (feed-forward and long-short term memory neural networks), is, then, coupled with a structural solver in order to create an aeroelastic reduced order model. The results are compared with CFD aeroelastic simulations, showing a high reduction of computational cost (99%) without penalties in the accuracy. The instabilities are captured and the mean deformation, amplitude and frequency of the motion are predicted. In addition, the different neural network models are compared evidencing that for the aeroelastic calculation feed-forward networks are most efficient in terms of accuracy and computational cost. | es_ES |
dc.description.sponsorship | This project has beenpartially funded by Spanish Ministry of Science, Innovation and Universities through the University Faculty Training (FPU) program with reference FPU19/02201. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Aerospace Science and Technology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Aeroelasticity | es_ES |
dc.subject | Artificial neural network | es_ES |
dc.subject | Fluid structure interaction | es_ES |
dc.subject | Nonlinear aerodynamics | es_ES |
dc.subject | Stall flutter | es_ES |
dc.subject | Computational fluid dynamics | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | On the application of artificial neural network for the development of a nonlinear aeroelastic model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ast.2021.106845 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU19%2F02201//AYUDA PREDOCTORAL FPU-CREMADES BOTELLA. PROYECTO: INTERACCIÓN FLUIDO ESTRUCTURA CON APLICACIÓN A FENÓMENOS AEROELÁSTICOS NO LINEALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Torregrosa, AJ.; García-Cuevas González, LM.; Quintero-Igeño, P.; Cremades-Botella, A. (2021). On the application of artificial neural network for the development of a nonlinear aeroelastic model. Aerospace Science and Technology. 115:1-15. https://doi.org/10.1016/j.ast.2021.106845 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ast.2021.106845 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.relation.pasarela | S\439249 | es_ES |
dc.contributor.funder | MINISTERIO DE UNIVERSIDADES E INVESTIGACION | es_ES |