- -

Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Todaro, Valeria es_ES
dc.contributor.author D'Oria, Marco es_ES
dc.contributor.author Tanda, Maria Giovanna es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.date.accessioned 2022-05-24T18:04:56Z
dc.date.available 2022-05-24T18:04:56Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 0022-1694 es_ES
dc.identifier.uri http://hdl.handle.net/10251/182868
dc.description.abstract [EN] The source location and the time history of a pollutant released in an aquifer are very relevant information for the design of effective remediation strategies. Usually, their identification requires solving an inverse problem when the only available information about the groundwater contamination event is a sparse set of concentration data collected in the aquifer at a few points downstream from the source. Here, a novel approach is proposed to solve the inverse problem: the use of the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) in the context of source contamination identification. This method is used for the simultaneous determination of the time history and the source location of a pollutant release based on observed concentration data and a calibrated numerical model of groundwater flow and mass transport in the aquifer. The ES-MDA is demonstrated in two case studies. The first one is based on an analytical solution of the flow and transport equations, aimed at the estimation of the source location and the release history of a nonreactive pollutant spreading in a two-dimensional homogeneous aquifer from a point source. For this case, different alternatives are considered for the spatial distribution of the observation points, the concentration sampling frequency, the ensemble size and the use of covariance localization and covariance inflation techniques in the formulation of the smoother. The purpose of this case is to test the new approach, analyze its performance and also to identify the conditions that render the problem ill-posed and, therefore, without solution; also, in this case, a new spatiotemporal iterative localization is presented. In the second case study, we use real data collected in a laboratory sandbox that reproduces a vertical cross-section of an unconfined aquifer with two-dimensional quasi-parallel flow between constant-head boundaries. The results show that the location, time and number of observations, the ensemble size and the application of covariance localization and covariance inflation techniques have an impact on the final solution. A well-designed monitoring network and the application of covariance corrections improve the performance of the ES-MDA and help avoiding ill-posedness and equifinality. The application to laboratory data validates the potential of ES-MDA to simultaneously estimate the time history and the source location of a pollutant released in groundwater in real cases. es_ES
dc.description.sponsorship The TeachinParma initiative, co-funded by Fondazione Cariparma and University of Parma (http://www.teachinparma.com/about/) supported Prof. J. Jaime Gomez-Hernandez as Visiting Professor at the University of Parma. Project PID2019-109131RB-I00 financed by the Spanish Ministry of Science and Innovation is also gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Inverse modeling es_ES
dc.subject Ensemble Kalman filter method es_ES
dc.subject Groundwater contaminant source es_ES
dc.subject Covariance localization es_ES
dc.subject Stochastic analysis es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2021.126215 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109131RB-I00/ES/APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Todaro, V.; D'oria, M.; Tanda, MG.; Gómez-Hernández, JJ. (2021). Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer. Journal of Hydrology. 598:1-10. https://doi.org/10.1016/j.jhydrol.2021.126215 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jhydrol.2021.126215 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 598 es_ES
dc.relation.pasarela S\437988 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem