- -

Beyond the Hausdorff metric in digital topology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Beyond the Hausdorff metric in digital topology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boxer, Laurence es_ES
dc.date.accessioned 2022-05-25T07:50:50Z
dc.date.available 2022-05-25T07:50:50Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182884
dc.description.abstract [EN] Two objects may be close in the Hausdorff metric, yet have very different geometric and topological properties. We examine other methods of comparing digital images such that objects close in each of these measures have some similar geometric or topological property. Such measures may be combined with the Hausdorff metric to yield a metric in which close images are similar with respect to multiple properties. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Digital image es_ES
dc.subject Hausdorff metric es_ES
dc.title Beyond the Hausdorff metric in digital topology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15893
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L. (2022). Beyond the Hausdorff metric in digital topology. Applied General Topology. 23(1):69-77. https://doi.org/10.4995/agt.2022.15893 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15893 es_ES
dc.description.upvformatpinicio 69 es_ES
dc.description.upvformatpfin 77 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15893 es_ES
dc.description.references A. Borat and T. Vergili, Digital Lusternik-Schnirelmann category, Turkish Journal of Mathematics 42 (2018), 1845-1852. es_ES
dc.description.references https://doi.org/10.3906/mat-1801-94 es_ES
dc.description.references K. Borsuk, On some metrizations of the hyperspace of compact sets, Fundamenta Mathematicae 41 (1954), 168-202. es_ES
dc.description.references https://doi.org/10.4064/fm-41-2-168-202 es_ES
dc.description.references K. Borsuk, Theory of Retracts, Polish Scientific Publishers, Warsaw, 1967. es_ES
dc.description.references L. Boxer, Computing deviations from convexity in polygons, Pattern Recognition Letters 14 (1993), 163-167. es_ES
dc.description.references https://doi.org/10.1016/0167-8655(93)90067-N es_ES
dc.description.references L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62 . es_ES
dc.description.references https://doi.org/10.1023/A:1008370600456 es_ES
dc.description.references L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics 1 (2010), 377-386. es_ES
dc.description.references https://doi.org/10.4236/am.2010.15050 es_ES
dc.description.references L. Boxer, Convexity and freezing sets in digital topology, Applied General Topology 22, no. 1 (2021), 121-137. es_ES
dc.description.references https://doi.org/10.4995/agt.2021.14185 es_ES
dc.description.references L. Boxer, I. Karaca and A. Oztel, Topological invariants in digital images, Journal of Mathematical Sciences: Advances and Applications 11, no. 2 (2011), 109-140. es_ES
dc.description.references L. Boxer and R. Miller, Coarse grained gather and scatter operations with applications, Journal of Parallel and Distributed Computing 64 (2004), 1297-1320. es_ES
dc.description.references https://doi.org/10.1016/j.jpdc.2004.07.002 es_ES
dc.description.references L. Boxer and P. C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images, Applied General Topology 17, no. 2 (2016), 139-158. es_ES
dc.description.references https://doi.org/10.4995/agt.2016.4624 es_ES
dc.description.references L. Chen, Gradually varied surfaces and its optimal uniform approximation, SPIE Proceedings 2182 (1994), 300-307. es_ES
dc.description.references https://doi.org/10.1117/12.171078 es_ES
dc.description.references L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004. es_ES
dc.description.references J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. es_ES
dc.description.references S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91. es_ES
dc.description.references https://doi.org/10.1016/j.ins.2004.03.018 es_ES
dc.description.references S.-E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177 (2007), 3314-3326. es_ES
dc.description.references https://doi.org/10.1016/j.ins.2006.12.013 es_ES
dc.description.references S. B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978. es_ES
dc.description.references A. Rosenfeld, 'Continuous' functions on digital images, Pattern Recognition Letters 4 (1987), 177-184. es_ES
dc.description.references https://doi.org/10.1016/0167-8655(86)90017-6 es_ES
dc.description.references R. Shonkwiler, An image algorithm for computing the Hausdorff distance efficiently in linear time, Information Processing Letters 30, no. 2 (1989), 87-89. es_ES
dc.description.references https://doi.org/10.1016/0020-0190(89)90114-2 es_ES
dc.description.references H. I. Stern, Polygonal entropy: a convexity measure, Pattern Recognition Letters 10, no. 4 (1989), 229-235. es_ES
dc.description.references https://doi.org/10.1016/0167-8655(89)90093-7 es_ES
dc.description.references T. Vergili, Digital Hausdorff distance on a connected digital image, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, no. 2 (2020), 76-88. es_ES
dc.description.references https://doi.org/10.31801/cfsuasmas.620674 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem