- -

Numerical reckoning fixed points via new faster iteration process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical reckoning fixed points via new faster iteration process

Mostrar el registro completo del ítem

Ullah, K.; Ahmad, J.; Khan, FM. (2022). Numerical reckoning fixed points via new faster iteration process. Applied General Topology. 23(1):213-223. https://doi.org/10.4995/agt.2022.11902

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182891

Ficheros en el ítem

Metadatos del ítem

Título: Numerical reckoning fixed points via new faster iteration process
Autor: Ullah, Kifayat Ahmad, Junaid Khan, Fida Muhammad
Fecha difusión:
Resumen:
[EN] In this paper, we propose a new iteration process which is faster than the leading S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79], Thakur et al. [App. Math. Comp. 275 (2016), 147-155] and M [Filomat 32, no. 1 ...[+]
Palabras clave: Uniformly convex Banach space , Iteration process , Weak convergence , Strong convergence , Generalized α-nonexpansive mappings
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.11902
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.11902
Tipo: Artículo

References

M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik 66, no. 2 (2014) 223-234.

R. P. Agarwal, D. O'Regan and D. S. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications Series: Topological Fixed Point Theory and Its Applications, vol. 6. Springer, New York (2009).

https://doi.org/10.1155/2009/439176 [+]
M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik 66, no. 2 (2014) 223-234.

R. P. Agarwal, D. O'Regan and D. S. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications Series: Topological Fixed Point Theory and Its Applications, vol. 6. Springer, New York (2009).

https://doi.org/10.1155/2009/439176

R. P. Agarwal, D. O'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8, no. 1 (2007), 61-79. [6]

K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 4387-4391.

https://doi.org/10.1016/j.na.2011.03.057

D. Ariza-Ruiz, C. Hermandez Linares, E. Llorens-Fuster and E. Moreno-Galvez, On α-nonexpansive mappings in Banach spaces, Carpath. J. Math. 32 (2016), 13-28.

https://doi.org/10.37193/CJM.2016.01.02

F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA. 54 (1965), 1041-1044.

https://doi.org/10.1073/pnas.54.4.1041

D. Gohde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258.

https://doi.org/10.1002/mana.19650300312

F. Gursoy and V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarted argument, (2014) arXiv:1403.2546v2.

S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147-150.

https://doi.org/10.1090/S0002-9939-1974-0336469-5

W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Monthly 72 (1965), 1004-1006.

https://doi.org/10.2307/2313345

W. R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc. 4 (1953), 506-510.

https://doi.org/10.1090/S0002-9939-1953-0054846-3

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251, no. 1 (2000), 217-229.

https://doi.org/10.1006/jmaa.2000.7042

Z. Opial, Weak and strong convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73 (1967), 591-597.

https://doi.org/10.1090/S0002-9904-1967-11761-0

D. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 38, no. 2 (2017), 248-266.

https://doi.org/10.1080/01630563.2016.1276075

B. E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci. 14 (1991), 1-16.

https://doi.org/10.1155/S0161171291000017

J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159.

https://doi.org/10.1017/S0004972700028884

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088-1095.

https://doi.org/10.1016/j.jmaa.2007.09.023

W. Takahashi, Nonlinear Functional Analysis. Yokohoma Publishers, Yokohoma (2000). [50]

B. S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, App. Math. Comp. 275 (2016), 147-155.

https://doi.org/10.1016/j.amc.2015.11.065

K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki's Generalized nonexpansive mappings via new iteration process, Filomat 32, no. 1 (2018), 187-196.

https://doi.org/10.2298/FIL1801187U

H. H. Wicke and J.M. Worrell, Jr., Open continuous mappings of spaces having bases of countable order, Duke Math. J. 34 (1967), 255-271.

https://doi.org/10.1215/S0012-7094-67-03430-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem