- -

Closed ideals in the functionally countable subalgebra of C(X)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Closed ideals in the functionally countable subalgebra of C(X)

Mostrar el registro completo del ítem

Veisi, A. (2022). Closed ideals in the functionally countable subalgebra of C(X). Applied General Topology. 23(1):79-90. https://doi.org/10.4995/agt.2022.15844

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182893

Ficheros en el ítem

Metadatos del ítem

Título: Closed ideals in the functionally countable subalgebra of C(X)
Autor: Veisi, Amir
Fecha difusión:
Resumen:
[EN] In this paper, closed ideals in Cc(X), the functionally countable subalgebra of C(X), with the mc-topology, is studied. We show that ifX is CUC-space, then C*c(X) with the uniform norm-topology is a Banach algebra. ...[+]
Palabras clave: Zero-dimensional space , Functionally countable subalgebra , M-topology , Closed ideal , Ec-filter , Ec-ideal , P-space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.15844
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.15844
Tipo: Artículo

References

F. Azarpanah, O. A. S. Karamzadeh, Z. Keshtkar and A. R. Olfati, On maximal ideals of $C_c(X)$ and uniformity its localizations, Rocky Mountain Journal of Mathematics 48, no. 2 (2018), 345-382.

https://doi.org/10.1216/RMJ-2018-48-2-345

R. Engelking, General topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989. [+]
F. Azarpanah, O. A. S. Karamzadeh, Z. Keshtkar and A. R. Olfati, On maximal ideals of $C_c(X)$ and uniformity its localizations, Rocky Mountain Journal of Mathematics 48, no. 2 (2018), 345-382.

https://doi.org/10.1216/RMJ-2018-48-2-345

R. Engelking, General topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.

M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova 129 (2013), 47-69.

https://doi.org/10.4171/RSMUP/129-4

M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, C(X) versus its functionally countable subalgebra, The Bulletin of the Iranian Mathematical Society 45, no. 1 (2019), 173-187.

https://doi.org/10.1007/s41980-018-0124-8

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin/Heidelberg/New York, 1976.

J. Gómez-Pérez and W. W. McGovern, The m-topology on $C_m(X)$ revisited, Topology Appl. 153 (2006), 1838-1848.

https://doi.org/10.1016/j.topol.2005.06.016

A. Hayati, M. Namdari and M. Paimann, On countably uniform closed spaces, Quaestiones Mathematicae 42, no. 5 (2019), 593-604.

https://doi.org/10.2989/16073606.2018.1476415

E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948), 45-99.

https://doi.org/10.1090/S0002-9947-1948-0026239-9

O. A. S. Karamzadeh and Z. Keshtkar, On c-realcompact spaces, Quaestiones Mathematicae 41, no. 8 (2018), 1135-1167.

https://doi.org/10.2989/16073606.2018.1441919

O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16, no. 2 (2015), 183-207.

https://doi.org/10.4995/agt.2015.3445

G. D. Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, Topology Appl. 86 (1998), 105-122.

https://doi.org/10.1016/S0166-8641(97)00114-4

M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012), 561-571.

J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff, Springer-Verlag, 1988.

https://doi.org/10.1007/978-1-4612-3712-9

A. Veisi, $e_c$-Filters and $e_c$-ideals in the functionally countable subalgebra of $C^*(X)$, Appl. Gen. Topol. 20, no. 2 (2019), 395-405.

https://doi.org/10.4995/agt.2019.11524

A. Veisi, On the $m_c$-topology on the functionally countable subalgebra of C(X), Journal of Algebraic Systems 9, no. 2 (2022), 335-345.

A. Veisi and A. Delbaznasab, Metric spaces related to Abelian groups, Appl. Gen. Topol. 22, no. 1 (2021), 169-181.

https://doi.org/10.4995/agt.2021.14446

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem