- -

Fixed point results with respect to a wt-distance in partially ordered b-metric spaces and its application to nonlinear fourth-order differential equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point results with respect to a wt-distance in partially ordered b-metric spaces and its application to nonlinear fourth-order differential equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Babaei, Reza es_ES
dc.contributor.author Rahimi, Hamidreza es_ES
dc.contributor.author Soleimani Rad, Ghasem es_ES
dc.date.accessioned 2022-05-25T10:35:52Z
dc.date.available 2022-05-25T10:35:52Z
dc.date.issued 2022-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/182896
dc.description.abstract [EN] In this paper we study the existence of the fixed points for Hardy-Rogers type mappings with respect to a wt-distance in partially ordered metric spaces. Our results provide a more general statement, since we replace a w-distance with a wt-distance and ordered metric spaces with ordered b-metric spaces. Some examples are presented to validate our obtained results and an application to nonlinear fourth-order differential equation are given to support the main results. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Partially ordered set es_ES
dc.subject B-metric space es_ES
dc.subject Wt-distance es_ES
dc.subject Fixed point es_ES
dc.title Fixed point results with respect to a wt-distance in partially ordered b-metric spaces and its application to nonlinear fourth-order differential equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.11368
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Babaei, R.; Rahimi, H.; Soleimani Rad, G. (2022). Fixed point results with respect to a wt-distance in partially ordered b-metric spaces and its application to nonlinear fourth-order differential equation. Applied General Topology. 23(1):121-133. https://doi.org/10.4995/agt.2022.11368 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.11368 es_ES
dc.description.upvformatpinicio 121 es_ES
dc.description.upvformatpfin 133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\11368 es_ES
dc.description.references R. P. Agarwal, E. Karapinar, D. O'Regan and A. F. Roldan-Lopez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer-International Publishing, Switzerland, 2015. es_ES
dc.description.references https://doi.org/10.1007/978-3-319-24082-4 es_ES
dc.description.references I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Anal. 30 (1989), 26-37. es_ES
dc.description.references S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales, Fund. Math. J. 3 (1922), 133-181. es_ES
dc.description.references https://doi.org/10.4064/fm-3-1-133-181 es_ES
dc.description.references M. Boriceanu, Fixed point theory for multivalued contractions on a set with two b-metrics, Creative. Math & Inf. 17, no. 3 (2008), 326-332. es_ES
dc.description.references M. Bota, A. Molnar and C. Varga, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory. 12, no. 2 (2011), 21-28. es_ES
dc.description.references S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1, no. 1 (1993), 5-11. es_ES
dc.description.references M. Demma, R. Saadati and P. Vetro, Multi-valued operators with respect wt-distance on metric type spaces, Bull. Iranian Math. Soc. 42, no. 6 (2016), 1571-1582. es_ES
dc.description.references K. Fallahi, M. Abbas and G. Soleimani Rad, Generalized $c$-distance on cone b-metric spaces endowed with a graph and fixed point results, Appl. Gen. Topol. 18, no. 2 (2017), 391-400. es_ES
dc.description.references https://doi.org/10.4995/agt.2017.7673 es_ES
dc.description.references K. Fallahi, A. Petrusel and G. Soleimani Rad, Fixed point results for pointwise Chatterjea type mappings with respect to a c-distance in cone metric spaces endowed with a graph, U.P.B. Sci. Bull. (Series A). 80, no. 1 (2018), 47-54. es_ES
dc.description.references G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201-206. es_ES
dc.description.references https://doi.org/10.4153/CMB-1973-036-0 es_ES
dc.description.references N. Hussain, R. Saadati and R. P. Agrawal, On the topology and wt-distance on metric type spaces, Fixed Point Theory Appl. 2014, 2014:88. es_ES
dc.description.references https://doi.org/10.1186/1687-1812-2014-88 es_ES
dc.description.references D. Ilić and V. Rakočević, Common fixed points for maps on metric space with $w$-distance, Appl. Math. Comput. 199, no. 2 (2008), 599-610. es_ES
dc.description.references https://doi.org/10.1016/j.amc.2007.10.016 es_ES
dc.description.references J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359-1373. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-07-09110-1 es_ES
dc.description.references M. Jleli, V. Čojbašić Rajić, B. Samet and C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. 12 (2012), 175-192. es_ES
dc.description.references https://doi.org/10.1007/s11784-012-0081-4 es_ES
dc.description.references M. Jovanović, Z. Kadelburg and S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. 2010, 2010:978121. es_ES
dc.description.references https://doi.org/10.1155/2010/978121 es_ES
dc.description.references O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391. es_ES
dc.description.references M. A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129. es_ES
dc.description.references https://doi.org/10.1016/j.na.2010.06.084 es_ES
dc.description.references J. J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22, no. 3 (2005), 223-239. es_ES
dc.description.references https://doi.org/10.1007/s11083-005-9018-5 es_ES
dc.description.references A. Petrusel and I. A. Rus, Fixed point theorems in ordered $L$-spaces, Proc. Amer. Math. Soc. 134, no. 2 (2006), 411-418. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-05-07982-7 es_ES
dc.description.references H. Rahimi, M. Abbas and G. Soleimani Rad, Common fixed point results for four mappings on ordered vector metric spaces, Filomat. 29, no. 4 (2015), 865-878. es_ES
dc.description.references https://doi.org/10.2298/FIL1504865R es_ES
dc.description.references A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-03-07220-4 es_ES
dc.description.references B. E. Rhoades, A comparison of various definition of contractive mappings, Trans. Amer. Math. Soc. 266 (1977), 257-290. es_ES
dc.description.references https://doi.org/10.1090/S0002-9947-1977-0433430-4 es_ES
dc.description.references N. Shioji, T. Suzuki and W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc. 126, no. 10 (1998), 3117-3124. es_ES
dc.description.references https://doi.org/10.1090/S0002-9939-98-04605-X es_ES
dc.description.references W. A. Wilson, On semi-metric spaces, Amer. Jour. Math. 53, no. 2 (1931), 361-373. es_ES
dc.description.references https://doi.org/10.2307/2370790 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem