- -

Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters

Mostrar el registro completo del ítem

Lloret, V.; Rivero-Crespo, MÁ.; Vidal Moya, JA.; Wild, S.; Domenech Carbo, A.; Heller, BSJ.; Shin, S.... (2019). Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters. Nature Communications. 10:1-11. https://doi.org/10.1038/s41467-018-08063-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182966

Ficheros en el ítem

Metadatos del ítem

Título: Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters
Autor: Lloret, Vicent Rivero-Crespo, Miguel Ángel Vidal Moya, José Alejandro Wild, Stefan Domenech Carbo, Antonio Heller, Bettina S. J. Shin, Sunghwan Steinrueck, Hans-Peter Maier, Florian Hauke, Frank Varela, Maria Hirsch, Andreas Leyva Perez, Antonio Abellán Sáez, Gonzalo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well-structured and stable materials. Here, we report ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/s41467-018-08063-3
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41467-018-08063-3
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/604391/EU
...[+]
info:eu-repo/grantAgreement/EC/FP7/604391/EU
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//11630018/
info:eu-repo/grantAgreement/EC/H2020/693398/EU
info:eu-repo/grantAgreement/GVA//SEJI%2F2018%2F034/
info:eu-repo/grantAgreement/EC/H2020/742145/EU
info:eu-repo/grantAgreement/MINECO//MAT2015-066888-C3-3-R/
info:eu-repo/grantAgreement/EC/H2020/804110/EU
info:eu-repo/grantAgreement/DFG//EXC 315/
info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
info:eu-repo/grantAgreement/FAU//WS16-17_Nat_04/
info:eu-repo/grantAgreement/DFG//FLAG-ERA AB694%2F2-1/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/
[-]
Agradecimientos:
We thank the European Research Council (ERC Starting Grant 804110 to G.A., and ERC Advanced Grant 742145 B-PhosphoChem to A.H.) for financial support. The research leading to these results was partially funded by the ...[+]
Tipo: Artículo

References

Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, s41570–016 (2017). 0014–0016.

Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. 112, 4523–4530 (2015).

Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017). [+]
Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, s41570–016 (2017). 0014–0016.

Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. 112, 4523–4530 (2015).

Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

Ares, P., Palacios, J. J., Abellán, G., Gómez-Herrero, J. & Zamora, F. Recent progress on antimonene: a new bidimensional material. Adv. Mater. 30, 1703771 (2018).

Chen, P., Li, N., Chen, X., Ong, W.-J. & Zhao, X. The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2018).

Abellán, G. et al. Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55, 14557–14562 (2016).

Abellán, G. et al. Noncovalent functionalization and charge transfer in antimonene. Angew. Chem. Int. Ed. 56, 14389–14394 (2017).

Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 114, 6179–6212 (2014).

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M. & García, H. Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 46, 4501–4529 (2017).

Kiser, P. D. et al. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nat. Chem. Biol. 11, nchembio.1799 (2015).

Sanchez, C. et al. Lifetime and reactivity of an ultimate tamoxifen carcinogen: the tamoxifen carbocation. J. Am. Chem. Soc. 120, 13513–13514 (1998).

Watson, A. J. A. & Williams, J. M. J. The give and take of alcohol activation. Science 329, 635–636 (2010).

Trost, B. M. & Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996).

Xu, X.-L. & Li, Z. Catalytic electrophilic alkylation of p‐quinones through a redox chain reaction. Angew. Chem. 129, 8308–8312 (2017).

Asao, N., Aikawa, H., Tago, S. & Umetsu, K. Gold-catalyzed etherification and friedel−crafts alkylation using ortho-alkynylbenzoic acid alkyl ester as an efficient alkylating agent. Org. Lett. 9, 4299–4302 (2007).

Manbeck, K. A., Kundu, S., Walsh, A. P., Brennessel, W. W. & Jones, W. D. Carbon–oxygen bond activation in esters by platinum(0): cleavage of the less reactive bond. Organometallics 31, 5018–5024 (2012).

Liu, X., Jia, J. & Rueping, M. Nickel-catalyzed C–O bond-cleaving alkylation of esters: direct replacement of the ester moiety by functionalized alkyl chains. ACS Catal. 7, 4491–4496 (2017).

Oliver-Meseguer, J., Cabrero-Antonino, J. R., Domínguez, I., Leyva-Pérez, A. & Corma, A. Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338, 1452–1455 (2012).

Leyva-Pérez, A., Doménech-Carbó, A. & Corma, A. Unique distal size selectivity with a digold catalyst during alkyne homocoupling. Nat. Commun. 6, 6703 (2015).

Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017).

Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).

Gibaja, C. et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem. Int. Ed. 55, 14345–14349 (2016).

Abellán, G. et al. Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139, 10432–10440 (2017).

Kashin, A. S., Galkin, K. I., Khokhlova, E. A. & Ananikov, V. P. Direct observation of self-organized water-containing structures in the liquid phase and their influence on 5-(hydroxymethyl)furfural formation in ionic liquids. Angew. Chem. Int. Ed. 55, 2161–2166 (2016).

Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

Gottfried, J. M. et al. Surface studies on the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate using X-ray photoelectron spectroscopy (XPS). Z. Für Phys. Chem. 220, 1439–1453 (2006).

Kuntz, K. L. et al. Control of surface and edge oxidation on phosphorene. ACS Appl. Mater. Interfaces 9, 9126–9135 (2017).

Ares, P. et al. Mechanical Isolation of highly stable antimonene under ambient conditions. Adv. Mater. 28, 6332–6336 (2016).

Fortin-Deschênes, M. et al. Synthesis of antimonene on germanium. Nano. Lett. 17, 4970–4975 (2017).

Walia, S. et al. Ambient protection of few‐layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 29, 1700152 (2017).

Bodenes, L., Darwiche, A., Monconduit, L. & Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 273, 14–24 (2015).

Powell, C. J. Recommended Auger parameters for 42 elemental solids. J. Electron Spectrosc. Relat. Phenom. 185, 1–3 (2012).

Yates, K. Kinetics of ester hydrolysis in concentrated acid. Acc. Chem. Res. 4, 136–144 (1971).

Chen, X. et al. Synthesis of tert-butyl acetate via eco-friendly additive reaction over mesoprous silica catalysts with balanced Brönsted and Lewis acid sites. J. Porous Mater. 23, 255–262 (2016).

King, D. L., Cooper, M. D. & Faber, M. A. Acid catalyzed process. US Patent 4, 868–343 (1989).

Bandini, M., Fagioli, M. & Umani-Ronchi, A. Solid acid-catalysed michael-type conjugate addition of indoles to electron-poor CC bonds: towards high atom economical semicontinuous processes. Adv. Synth. Catal. 346, 545–548 (2004).

Bartoli, G. et al. Unusual and unexpected reactivity of t-butyl dicarbonate (Boc2O) with alcohols in the presence of magnesium perchlorate. a new and general route to t-butyl ethers. Org. Lett. 7, 427–430 (2005).

Huang, Y. et al. Interaction of black phosphorus with oxygen and water. Chem. Mater. 28, 8330–8339 (2016).

Wang, Y. et al. Degradation of black phosphorus: a real-time 31 P NMR study. 2D Mater. 3, 035025 (2016).

Wang, L., Sofer, Z. & Pumera, M. Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2, 324–327 (2015).

Olah, G. A. & Kiovsky, T. E. Stable carbonium ions. LI. Fluorobenzenonium ions. J. Am. Chem. Soc. 89, 5692–5694 (1967).

Jerry, M. Advanced Organic Chemistry: Reactions Mechanisms and Structure. (McGraw Hill Book Company, New York, 1968).

Pavelich, W. A. & Taft, R. W. Jr. The evaluation of inductive and steric effects on reactivity. the methoxide ion catalyzed rates of methanolysis of /-menthyl esters in methanol. J. Am. Chem. Soc. 79, 4935–4940 (1957).

Üzengi Aktürk, O., Aktürk, E. & Ciraci, S. Effects of adatoms and physisorbed molecules on the physical properties of antimonene. Phys. Rev. B 93, 035450 (2016).

Wang, H. et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376–11382 (2015).

Mayorga-Martinez, C. C., Mohamad Latiff, N., Eng, A. Y. S., Sofer, Z. & Pumera, M. Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal. Chem. 88, 10074–10079 (2016).

Hu, J. et al. Band gap engineering in a 2D material for solar-to-chemical energy conversion. Nano Lett. 16, 74–79 (2015).

Lei, W. et al. Bandgap- and local field-dependent photoactivity of Ag/black phosphorus nanohybrids. ACS Catal. 6, 8009–8020 (2016).

Caporali, M. et al. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53, 10946–10949 (2017).

Niedermaier, I., Kolbeck, C., Steinrück, H.-P. & Maier, F. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces. Rev. Sci. Instrum. 87, 045105 (2016).

Shard, A. G. Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf. Interface Anal. 46, 175–185 (2014).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem