Mostrar el registro sencillo del ítem
dc.contributor.author | Mon-Conejero, Marta | es_ES |
dc.contributor.author | Bruno, Rosaria | es_ES |
dc.contributor.author | Sanz-Navarro, Sergio | es_ES |
dc.contributor.author | Negro, Cristina | es_ES |
dc.contributor.author | Ferrando-Soria, Jesus | es_ES |
dc.contributor.author | Bartella, Lucia | es_ES |
dc.contributor.author | Di Donna, Leonardo | es_ES |
dc.contributor.author | Prejano, Mario | es_ES |
dc.contributor.author | Marino, Tiziana | es_ES |
dc.contributor.author | Leyva Perez, Antonio | es_ES |
dc.contributor.author | Armentano, Donatella | es_ES |
dc.contributor.author | Pardo, Emilio | es_ES |
dc.date.accessioned | 2022-06-01T18:07:07Z | |
dc.date.available | 2022-06-01T18:07:07Z | |
dc.date.issued | 2020-06-17 | es_ES |
dc.identifier.issn | 2041-1723 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183032 | |
dc.description.abstract | [EN] The exact chemical structure of non-crystallising natural products is still one of the main challenges in Natural Sciences. Despite tremendous advances in total synthesis, the absolute structural determination of a myriad of natural products with very sensitive chemical functionalities remains undone. Here, we show that a metal-organic framework (MOF) with alcohol-containing arms and adsorbed water, enables selective hydrolysis of glycosyl bonds, supramolecular order with the so-formed chiral fragments and absolute determination of the organic structure by single-crystal X-ray crystallography in a single operation. This combined strategy based on a biomimetic, cheap, robust and multigram available solid catalyst opens the door to determine the absolute configuration of ketal compounds regardless degradation sensitiveness, and also to design extremely-mild metal-free solid-catalysed processes without formal acid protons. Elucidation of the chemical structure of natural products constitutes one of the main challenges in Natural Sciences. Here, the authors show that an amino acid-based metal-organic framework exhibits hydrolase-like catalytic activity and crystallographic determination of the resulting products | es_ES |
dc.description.sponsorship | This work was supported by the Ministero dell'Istruzione, dell'Universita e della Ricerca (Italy) and the MINECO (Spain) (Projects CTQ2016-75671-P, CTQ 2017-86735-P, RTC-2017-6331-5, Severo Ochoa program SEV-2016-0683 and Excellence Unit "Maria de Maeztu" MDM-2015-0538). R.B. thanks the MIUR (Project PON R&I FSE-FESR 2014-2020) for grant. L.B wishes to thank Italian MIUR for grant n. AIM1899391-1 in the framework of the project "Azione I.2, Mobilita dei Ricercatori, PON R&I 2014-2020". Thanks are also extended to the "2019 Post-doctoral Junior Leader-Retaining Fellowship, la Caixa Foundation (ID100010434 and fellowship code LCF/BQ/PR19/11700011" (J. F.-S.). S. S.-N. thanks ITQ for the concession of a contract. D.A. acknowledges the financial support of the Fondazione CARIPLO/"Economia Circolare: ricerca per un futuro sostenibile" 2019, Project code: 2019-2090, MOCA. E.P. acknowledges the financial support of the European Research Council under the European Union's Horizon 2020 research and innovation program/ERC Grant Agreement No. 814804, MOF-reactors. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | Hydrolase-like catalysis and structural resolution of natural products by a metal-organic framework | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41467-020-16699-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RTC-2017-6331-5//NUEVA SINTESIS DEL OLIGOMERO CLAVE EN TINTAS DIGITALES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-75671-P/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPR19%2F11700011/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/814804/EU | |
dc.relation.projectID | info:eu-repo/grantAgreement/Fondazione Cariplo//2019-2090/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Mon-Conejero, M.; Bruno, R.; Sanz-Navarro, S.; Negro, C.; Ferrando-Soria, J.; Bartella, L.; Di Donna, L.... (2020). Hydrolase-like catalysis and structural resolution of natural products by a metal-organic framework. Nature Communications. 11(1):1-9. https://doi.org/10.1038/s41467-020-16699-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41467-020-16699-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 32555154 | es_ES |
dc.identifier.pmcid | PMC7300120 | es_ES |
dc.relation.pasarela | S\461657 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | |
dc.contributor.funder | Ministero dell'Istruzione, dell'Università e della Ricerca | |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | |
dc.contributor.funder | Fondazione Cariplo | |
dc.description.references | Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020). | es_ES |
dc.description.references | Shu, W., Lorente, A., Gómez-Bengoa, E. & Nevado, C. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nat. Commun. 8, 13832 (2017). | es_ES |
dc.description.references | Zhao, J.-X. et al. Structural elucidation and bioinspired total syntheses of ascorbylated diterpenoid hongkonoids A–D. J. Am. Chem. Soc. 140, 2485–2492 (2018). | es_ES |
dc.description.references | Boronat, M., Martínez-Sánchez, C., Law, D. & Corma, A. Enzyme-like Specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. J. Am. Chem. Soc. 130, 16316–16323 (2008). | es_ES |
dc.description.references | Lewis, J. D., Van de Vyver, S. & Román-Leshkov, Y. Acid-base pairs in lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew. Chem. Int. Ed. 54, 9835–9838 (2015). | es_ES |
dc.description.references | Ruiz, V. R. et al. Gold catalysts and solid catalysts for biomass transformations: valorization of glycerol and glycerol–water mixtures through formation of cyclic acetals. J. Catal. 271, 351–357 (2010). | es_ES |
dc.description.references | Corma, A., Díaz, U., García, T., Sastre, G. & Velty, A. Multifunctional hybrid organic-inorganic catalytic materials with a hierarchical system of well-defined micro- and mesopores. J. Am. Chem. Soc. 132, 15011–15021 (2010). | es_ES |
dc.description.references | Fernández, A. B., Boronat, M., Blasco, T. & Corma, A. Establishing a molecular mechanism for the Beckmann rearrangement of oximes over microporous molecular sieves. Angew. Chem. Int. Ed. 44, 2370–2373 (2005). | es_ES |
dc.description.references | Fernandez, A., Marinas, A., Blasco, T., Fornes, V. & Corma, A. Insight into the active sites for the Beckmann rearrangement on porous solids by in situ infrared spectroscopy. J. Catal. 243, 270–277 (2006). | es_ES |
dc.description.references | Carceller, J. M. et al. Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green. Chem. 21, 839–849 (2019). | es_ES |
dc.description.references | Wang, M. et al. Genesis and stability of hydronium ions in zeolite channels. J. Am. Chem. Soc. 141, 3444–3455 (2019). | es_ES |
dc.description.references | Murphy, B. M. et al. Nature and catalytic properties of in-situ-generated brønsted acid sites on NaY. ACS Catal. 9, 1931–1942 (2019). | es_ES |
dc.description.references | Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019). | es_ES |
dc.description.references | Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 974 (2013). | es_ES |
dc.description.references | Bloch, W. M., Champness, N. R. & Doonan, C. J. X-ray crystallography in open-framework materials. Angew. Chem. Int. Ed. 54, 12860–12867 (2015). | es_ES |
dc.description.references | Cohen, S. M. The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017). | es_ES |
dc.description.references | Grancha, T. et al. Postsynthetic improvement of the physical properties in a metal-organic framework through a single crystal to single crystal transmetallation. Angew. Chem. Int. Ed. 54, 6521–6525 (2015). | es_ES |
dc.description.references | Pei, X., Bürgi, H.-B., Kapustin, E. A., Liu, Y. & Yaghi, O. M. Coordinative alignment in the pores of MOFs for the structural determination of N-, S-, and P-containing organic compounds including complex chiral molecules. J. Am. Chem. Soc. 141, 18862–18869 (2019). | es_ES |
dc.description.references | Mon, M. et al. Solid-state molecular nanomagnet inclusion into a magnetic metal-organic framework: interplay of the magnetic properties. Chem. Eur. J. 22, 539–545 (2016). | es_ES |
dc.description.references | Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010). | es_ES |
dc.description.references | Kersten, R. D. et al. A red algal bourbonane sesquiterpene synthase defined by microgram-scale NMR-coupled crystalline sponge X-ray diffraction analysis. J. Am. Chem. Soc. 139, 16838–16844 (2017). | es_ES |
dc.description.references | Lee, S., Hoshino, M., Fujita, M. & Urban, S. Cycloelatanene A and B: absolute configuration determination and structural revision by the crystalline sponge method. Chem. Sci. 8, 1547–1550 (2017). | es_ES |
dc.description.references | Matsuda, Y. et al. Astellifadiene: structure determination by nmr spectroscopy and crystalline sponge method, and elucidation of its biosynthesis. Angew. Chem. Int. Ed. 55, 5785–5788 (2016). | es_ES |
dc.description.references | Tejeda-Serrano, M. et al. Isolated Fe(III)–O sites catalyze the hydrogenation of acetylene in ethylene flows under front-end industrial conditions. J. Am. Chem. Soc. 140, 8827–8832 (2018). | es_ES |
dc.description.references | Rivero-Crespo, M. A. et al. Confined Pt 1 1+ water clusters in a MOF catalyze the low-temperature water-gas shift reaction with both CO2 oxygen atoms coming from water. Angew. Chem. Int. Ed. 57, 17094–17099 (2018). | es_ES |
dc.description.references | Mon, M. et al. Synthesis of densely packaged, ultrasmall Pt 0 2 clusters within a thioether-functionalized MOF: catalytic activity in industrial reactions at low temperature. Angew. Chem. Int. Ed. 57, 6186–6191 (2018). | es_ES |
dc.description.references | Mon, M. et al. Stabilized Ru[(H2O)6]3+ in confined spaces (MOFs and zeolites) catalyzes the imination of primary alcohols under atmospheric conditions with wide scope. ACS Catal. 8, 10401–10406 (2018). | es_ES |
dc.description.references | Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017). | es_ES |
dc.description.references | Bruno, R. et al. Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer. Chem. Commun. 54, 6356–6359 (2018). | es_ES |
dc.description.references | Mon, M. et al. Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Mater. Horiz. 5, 683–690 (2018). | es_ES |
dc.description.references | Mon, M. et al. Efficient capture of organic dyes and crystallographic snapshots by a highly crystalline amino-acid-derived metal-organic Framework. Chem. Eur. J. 24, 17712–17718 (2018). | es_ES |
dc.description.references | Aulakh, D. et al. Metal–organic frameworks as platforms for the controlled nanostructuring of single-molecule magnets. J. Am. Chem. Soc. 137, 9254–9257 (2015). | es_ES |
dc.description.references | Hayes, L. M. et al. The crystalline sponge method: a systematic study of the reproducibility of simple aromatic molecule encapsulation and guest–host interactions. Cryst. Growth Des. 16, 3465–3472 (2016). | es_ES |
dc.description.references | Mon, M. et al. Lanthanide discrimination with hydroxyl-decorated flexible metal–organic frameworks. Inorg. Chem. 57, 13895–13900 (2018). | es_ES |
dc.description.references | Zhao, J., Yuan, Y., Meng, X., Duan, L. & Zhou, R. Highly efficient liquid-phase hydrogenation of naringin using a recyclable Pd/C catalyst. Mater. (Basel). 12, 46 (2018). | es_ES |
dc.description.references | Di Donna, L. et al. Statin-like principles of Bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 72, 1352–1354 (2009). | es_ES |
dc.description.references | Cicero, A. F. G. et al. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch. Med. Sci. 5, 965–1005 (2017). | es_ES |
dc.description.references | Sindona, G., Di Donna, L. & Dolce, V. Natural molecules extracted from bergamot tissues, extraction process and pharmaceutical use. PCT/EP2012/2424545, WO2010/041290 (A1) (2010). | es_ES |
dc.description.references | Istvan, E. S. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001). | es_ES |
dc.description.references | Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995). | es_ES |
dc.description.references | Gkaniatsou, E. et al. Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater. Horiz. 4, 55–63 (2017). | es_ES |
dc.description.references | Chen, K. & Wu, C.-D. Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coord. Chem. Rev. 378, 445–465 (2019). | es_ES |
dc.description.references | Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. J. Am. Chem. Soc. 138, 8352–8355 (2016). | es_ES |
dc.description.references | Baek, J. et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 140, 18208–18216 (2018). | es_ES |
dc.description.references | Wright, A. M. et al. A structural mimic of carbonic anhydrase in a metal-organic framework. Chem 4, 2894–2901 (2018). | es_ES |
dc.description.references | Lian, X. et al. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017). | es_ES |
dc.description.references | Doonan, C., Riccò, R., Liang, K., Bradshaw, D. & Falcaro, P. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc. Chem. Res. 50, 1423–1432 (2017). | es_ES |
dc.description.references | Young, R. J. et al. Isolating reactive metal-based species in metal–organic frameworks–viable strategies and opportunities. Chem. Sci. 11, 4031–4050 (2020). | es_ES |
dc.description.references | Viciano-Chumillas, M. et al. Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc. Chem. Res. 53, 520–531 (2020). | es_ES |
dc.description.references | Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018). | es_ES |
dc.description.references | Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019). | es_ES |