- -

Hydrolase-like catalysis and structural resolution of natural products by a metal-organic framework

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrolase-like catalysis and structural resolution of natural products by a metal-organic framework

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mon-Conejero, Marta es_ES
dc.contributor.author Bruno, Rosaria es_ES
dc.contributor.author Sanz-Navarro, Sergio es_ES
dc.contributor.author Negro, Cristina es_ES
dc.contributor.author Ferrando-Soria, Jesus es_ES
dc.contributor.author Bartella, Lucia es_ES
dc.contributor.author Di Donna, Leonardo es_ES
dc.contributor.author Prejano, Mario es_ES
dc.contributor.author Marino, Tiziana es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Armentano, Donatella es_ES
dc.contributor.author Pardo, Emilio es_ES
dc.date.accessioned 2022-06-01T18:07:07Z
dc.date.available 2022-06-01T18:07:07Z
dc.date.issued 2020-06-17 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183032
dc.description.abstract [EN] The exact chemical structure of non-crystallising natural products is still one of the main challenges in Natural Sciences. Despite tremendous advances in total synthesis, the absolute structural determination of a myriad of natural products with very sensitive chemical functionalities remains undone. Here, we show that a metal-organic framework (MOF) with alcohol-containing arms and adsorbed water, enables selective hydrolysis of glycosyl bonds, supramolecular order with the so-formed chiral fragments and absolute determination of the organic structure by single-crystal X-ray crystallography in a single operation. This combined strategy based on a biomimetic, cheap, robust and multigram available solid catalyst opens the door to determine the absolute configuration of ketal compounds regardless degradation sensitiveness, and also to design extremely-mild metal-free solid-catalysed processes without formal acid protons. Elucidation of the chemical structure of natural products constitutes one of the main challenges in Natural Sciences. Here, the authors show that an amino acid-based metal-organic framework exhibits hydrolase-like catalytic activity and crystallographic determination of the resulting products es_ES
dc.description.sponsorship This work was supported by the Ministero dell'Istruzione, dell'Universita e della Ricerca (Italy) and the MINECO (Spain) (Projects CTQ2016-75671-P, CTQ 2017-86735-P, RTC-2017-6331-5, Severo Ochoa program SEV-2016-0683 and Excellence Unit "Maria de Maeztu" MDM-2015-0538). R.B. thanks the MIUR (Project PON R&I FSE-FESR 2014-2020) for grant. L.B wishes to thank Italian MIUR for grant n. AIM1899391-1 in the framework of the project "Azione I.2, Mobilita dei Ricercatori, PON R&I 2014-2020". Thanks are also extended to the "2019 Post-doctoral Junior Leader-Retaining Fellowship, la Caixa Foundation (ID100010434 and fellowship code LCF/BQ/PR19/11700011" (J. F.-S.). S. S.-N. thanks ITQ for the concession of a contract. D.A. acknowledges the financial support of the Fondazione CARIPLO/"Economia Circolare: ricerca per un futuro sostenibile" 2019, Project code: 2019-2090, MOCA. E.P. acknowledges the financial support of the European Research Council under the European Union's Horizon 2020 research and innovation program/ERC Grant Agreement No. 814804, MOF-reactors. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Hydrolase-like catalysis and structural resolution of natural products by a metal-organic framework es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41467-020-16699-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTC-2017-6331-5//NUEVA SINTESIS DEL OLIGOMERO CLAVE EN TINTAS DIGITALES/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-75671-P/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPR19%2F11700011/
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/814804/EU
dc.relation.projectID info:eu-repo/grantAgreement/Fondazione Cariplo//2019-2090/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Mon-Conejero, M.; Bruno, R.; Sanz-Navarro, S.; Negro, C.; Ferrando-Soria, J.; Bartella, L.; Di Donna, L.... (2020). Hydrolase-like catalysis and structural resolution of natural products by a metal-organic framework. Nature Communications. 11(1):1-9. https://doi.org/10.1038/s41467-020-16699-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41467-020-16699-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 32555154 es_ES
dc.identifier.pmcid PMC7300120 es_ES
dc.relation.pasarela S\461657 es_ES
dc.contributor.funder Agencia Estatal de Investigación
dc.contributor.funder Ministero dell'Istruzione, dell'Università e della Ricerca
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona
dc.contributor.funder Fondazione Cariplo
dc.description.references Wang, Y., Carder, H. M. & Wendlandt, A. E. Synthesis of rare sugar isomers through site-selective epimerization. Nature 578, 403–408 (2020). es_ES
dc.description.references Shu, W., Lorente, A., Gómez-Bengoa, E. & Nevado, C. Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nat. Commun. 8, 13832 (2017). es_ES
dc.description.references Zhao, J.-X. et al. Structural elucidation and bioinspired total syntheses of ascorbylated diterpenoid hongkonoids A–D. J. Am. Chem. Soc. 140, 2485–2492 (2018). es_ES
dc.description.references Boronat, M., Martínez-Sánchez, C., Law, D. & Corma, A. Enzyme-like Specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO. J. Am. Chem. Soc. 130, 16316–16323 (2008). es_ES
dc.description.references Lewis, J. D., Van de Vyver, S. & Román-Leshkov, Y. Acid-base pairs in lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew. Chem. Int. Ed. 54, 9835–9838 (2015). es_ES
dc.description.references Ruiz, V. R. et al. Gold catalysts and solid catalysts for biomass transformations: valorization of glycerol and glycerol–water mixtures through formation of cyclic acetals. J. Catal. 271, 351–357 (2010). es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G. & Velty, A. Multifunctional hybrid organic-inorganic catalytic materials with a hierarchical system of well-defined micro- and mesopores. J. Am. Chem. Soc. 132, 15011–15021 (2010). es_ES
dc.description.references Fernández, A. B., Boronat, M., Blasco, T. & Corma, A. Establishing a molecular mechanism for the Beckmann rearrangement of oximes over microporous molecular sieves. Angew. Chem. Int. Ed. 44, 2370–2373 (2005). es_ES
dc.description.references Fernandez, A., Marinas, A., Blasco, T., Fornes, V. & Corma, A. Insight into the active sites for the Beckmann rearrangement on porous solids by in situ infrared spectroscopy. J. Catal. 243, 270–277 (2006). es_ES
dc.description.references Carceller, J. M. et al. Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green. Chem. 21, 839–849 (2019). es_ES
dc.description.references Wang, M. et al. Genesis and stability of hydronium ions in zeolite channels. J. Am. Chem. Soc. 141, 3444–3455 (2019). es_ES
dc.description.references Murphy, B. M. et al. Nature and catalytic properties of in-situ-generated brønsted acid sites on NaY. ACS Catal. 9, 1931–1942 (2019). es_ES
dc.description.references Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019). es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 974 (2013). es_ES
dc.description.references Bloch, W. M., Champness, N. R. & Doonan, C. J. X-ray crystallography in open-framework materials. Angew. Chem. Int. Ed. 54, 12860–12867 (2015). es_ES
dc.description.references Cohen, S. M. The postsynthetic renaissance in porous solids. J. Am. Chem. Soc. 139, 2855–2863 (2017). es_ES
dc.description.references Grancha, T. et al. Postsynthetic improvement of the physical properties in a metal-organic framework through a single crystal to single crystal transmetallation. Angew. Chem. Int. Ed. 54, 6521–6525 (2015). es_ES
dc.description.references Pei, X., Bürgi, H.-B., Kapustin, E. A., Liu, Y. & Yaghi, O. M. Coordinative alignment in the pores of MOFs for the structural determination of N-, S-, and P-containing organic compounds including complex chiral molecules. J. Am. Chem. Soc. 141, 18862–18869 (2019). es_ES
dc.description.references Mon, M. et al. Solid-state molecular nanomagnet inclusion into a magnetic metal-organic framework: interplay of the magnetic properties. Chem. Eur. J. 22, 539–545 (2016). es_ES
dc.description.references Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010). es_ES
dc.description.references Kersten, R. D. et al. A red algal bourbonane sesquiterpene synthase defined by microgram-scale NMR-coupled crystalline sponge X-ray diffraction analysis. J. Am. Chem. Soc. 139, 16838–16844 (2017). es_ES
dc.description.references Lee, S., Hoshino, M., Fujita, M. & Urban, S. Cycloelatanene A and B: absolute configuration determination and structural revision by the crystalline sponge method. Chem. Sci. 8, 1547–1550 (2017). es_ES
dc.description.references Matsuda, Y. et al. Astellifadiene: structure determination by nmr spectroscopy and crystalline sponge method, and elucidation of its biosynthesis. Angew. Chem. Int. Ed. 55, 5785–5788 (2016). es_ES
dc.description.references Tejeda-Serrano, M. et al. Isolated Fe(III)–O sites catalyze the hydrogenation of acetylene in ethylene flows under front-end industrial conditions. J. Am. Chem. Soc. 140, 8827–8832 (2018). es_ES
dc.description.references Rivero-Crespo, M. A. et al. Confined Pt 1 1+ water clusters in a MOF catalyze the low-temperature water-gas shift reaction with both CO2 oxygen atoms coming from water. Angew. Chem. Int. Ed. 57, 17094–17099 (2018). es_ES
dc.description.references Mon, M. et al. Synthesis of densely packaged, ultrasmall Pt 0 2 clusters within a thioether-functionalized MOF: catalytic activity in industrial reactions at low temperature. Angew. Chem. Int. Ed. 57, 6186–6191 (2018). es_ES
dc.description.references Mon, M. et al. Stabilized Ru[(H2O)6]3+ in confined spaces (MOFs and zeolites) catalyzes the imination of primary alcohols under atmospheric conditions with wide scope. ACS Catal. 8, 10401–10406 (2018). es_ES
dc.description.references Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017). es_ES
dc.description.references Bruno, R. et al. Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer. Chem. Commun. 54, 6356–6359 (2018). es_ES
dc.description.references Mon, M. et al. Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Mater. Horiz. 5, 683–690 (2018). es_ES
dc.description.references Mon, M. et al. Efficient capture of organic dyes and crystallographic snapshots by a highly crystalline amino-acid-derived metal-organic Framework. Chem. Eur. J. 24, 17712–17718 (2018). es_ES
dc.description.references Aulakh, D. et al. Metal–organic frameworks as platforms for the controlled nanostructuring of single-molecule magnets. J. Am. Chem. Soc. 137, 9254–9257 (2015). es_ES
dc.description.references Hayes, L. M. et al. The crystalline sponge method: a systematic study of the reproducibility of simple aromatic molecule encapsulation and guest–host interactions. Cryst. Growth Des. 16, 3465–3472 (2016). es_ES
dc.description.references Mon, M. et al. Lanthanide discrimination with hydroxyl-decorated flexible metal–organic frameworks. Inorg. Chem. 57, 13895–13900 (2018). es_ES
dc.description.references Zhao, J., Yuan, Y., Meng, X., Duan, L. & Zhou, R. Highly efficient liquid-phase hydrogenation of naringin using a recyclable Pd/C catalyst. Mater. (Basel). 12, 46 (2018). es_ES
dc.description.references Di Donna, L. et al. Statin-like principles of Bergamot fruit (Citrus bergamia): isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod. 72, 1352–1354 (2009). es_ES
dc.description.references Cicero, A. F. G. et al. Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Arch. Med. Sci. 5, 965–1005 (2017). es_ES
dc.description.references Sindona, G., Di Donna, L. & Dolce, V. Natural molecules extracted from bergamot tissues, extraction process and pharmaceutical use. PCT/EP2012/2424545, WO2010/041290 (A1) (2010). es_ES
dc.description.references Istvan, E. S. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001). es_ES
dc.description.references Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995). es_ES
dc.description.references Gkaniatsou, E. et al. Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater. Horiz. 4, 55–63 (2017). es_ES
dc.description.references Chen, K. & Wu, C.-D. Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coord. Chem. Rev. 378, 445–465 (2019). es_ES
dc.description.references Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. J. Am. Chem. Soc. 138, 8352–8355 (2016). es_ES
dc.description.references Baek, J. et al. Bioinspired metal–organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 140, 18208–18216 (2018). es_ES
dc.description.references Wright, A. M. et al. A structural mimic of carbonic anhydrase in a metal-organic framework. Chem 4, 2894–2901 (2018). es_ES
dc.description.references Lian, X. et al. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017). es_ES
dc.description.references Doonan, C., Riccò, R., Liang, K., Bradshaw, D. & Falcaro, P. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc. Chem. Res. 50, 1423–1432 (2017). es_ES
dc.description.references Young, R. J. et al. Isolating reactive metal-based species in metal–organic frameworks–viable strategies and opportunities. Chem. Sci. 11, 4031–4050 (2020). es_ES
dc.description.references Viciano-Chumillas, M. et al. Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc. Chem. Res. 53, 520–531 (2020). es_ES
dc.description.references Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018). es_ES
dc.description.references Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem