Mostrar el registro sencillo del ítem
dc.contributor.author | Aguilar-Fuertes, José J. | es_ES |
dc.contributor.author | Noguero-Rodríguez, Francisco | es_ES |
dc.contributor.author | Jaen Ruiz, José C. | es_ES |
dc.contributor.author | García-Raffi, L. M. | es_ES |
dc.contributor.author | Hoyas, S. | es_ES |
dc.date.accessioned | 2022-06-08T18:06:06Z | |
dc.date.available | 2022-06-08T18:06:06Z | |
dc.date.issued | 2021-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183132 | |
dc.description.abstract | [EN] The behaviours of individual flow structures have become a relevant matter of study in turbulent flows as the computational power to allow their study feasible has become available. Especially, high instantaneous Reynolds Stress events have been found to dominate the behaviour of the logarithmic layer. In this work, we present a viability study where two machine learning solutions are proposed to reduce the computational cost of tracking such structures in large domains. The first one is a Multi-Layer Perceptron. The second one uses Long Short-Term Memory (LSTM). Both of the methods are developed with the objective of taking the the structures' geometrical features as inputs from which to predict the structures' geometrical features in future time steps. Some of the tested Multi-Layer Perceptron architectures proved to perform better and achieve higher accuracy than the LSTM architectures tested, providing lower errors on the predictions and achieving higher accuracy in relating the structures in the consecutive time steps. | es_ES |
dc.description.sponsorship | This work was supported by RTI2018-102256-B-I00 of MINECO/FEDER. The computations of the new simulations were made possible by a generous grant of computing time from the Barcelona Supercomputing Centre, reference AECT-2020-2-0005. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Turbulence | es_ES |
dc.subject | Turbulent structures | es_ES |
dc.subject | DNS | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Tracking Turbulent Coherent Structures by Means of Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en14040984 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Aguilar-Fuertes, JJ.; Noguero-Rodríguez, F.; Jaen Ruiz, JC.; García-Raffi, LM.; Hoyas, S. (2021). Tracking Turbulent Coherent Structures by Means of Neural Networks. Energies. 14(4):1-15. https://doi.org/10.3390/en14040984 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en14040984 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\437886 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |