Mostrar el registro sencillo del ítem
dc.contributor.author | Girona, Ivan | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.date.accessioned | 2022-06-09T18:06:54Z | |
dc.date.available | 2022-06-09T18:06:54Z | |
dc.date.issued | 2021-01-15 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183159 | |
dc.description.abstract | [EN] We provide a characterization for the existence and uniqueness of solutions in the space of vector-valued sequences l(p) (Z, X)for the multiterm fractional delayed model in the form Delta(alpha)u(n) + lambda Delta(beta)u(n) = Lambda u(n) + u(n-tau) + f(n), n is an element of Z, alpha, beta is an element of R+, tau is an element of Z, lambda is an element of R, where X is a Banach space, A is a closed linear operator with domain D(A) defined on X, f is an element of l(p)(Z,X) and Delta(Gamma) denotes the Grunwald-Letkinov fractional derivative of order Gamma > 0. We also give some conditions to ensure the existence of solutions when adding nonlinearities. Finally, we illustrate our results with an example given by a general abstract nonlinear model that includes the fractional Fisher equation with delay. | es_ES |
dc.description.sponsorship | The second author was supported by MEC, MTM2016-75963-P and PID2019-105011GB-I00 and GVA/2018/110. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Delay | es_ES |
dc.subject | Grunwald-Letnikov derivative | es_ES |
dc.subject | Maximal l(p)-regularity | es_ES |
dc.subject | Multiterm fractional | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Maximal l(p)-regularity of multiterm fractional equations with delay | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.6792 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//GVA%2F2018%2F110//Ecuaciones diferenciales, sistemas dinámicos discretos, redes neuronales: un enfoque desde el Análisis Difuso/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2016-75963-P//DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Girona, I.; Murillo Arcila, M. (2021). Maximal l(p)-regularity of multiterm fractional equations with delay. Mathematical Methods in the Applied Sciences. 44(1):853-864. https://doi.org/10.1002/mma.6792 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.6792 | es_ES |
dc.description.upvformatpinicio | 853 | es_ES |
dc.description.upvformatpfin | 864 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\427225 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |