Mostrar el registro sencillo del ítem
dc.contributor.author | Xanthopoulou, Aliki | es_ES |
dc.contributor.author | Montero-Pau, Javier | es_ES |
dc.contributor.author | Picó Sirvent, María Belén | es_ES |
dc.contributor.author | Boumpas, Panagiotis | es_ES |
dc.contributor.author | Tsaliki, Eleni | es_ES |
dc.contributor.author | Paris, Harry S. | es_ES |
dc.contributor.author | Tsaftaris, Athanasios | es_ES |
dc.contributor.author | Kalivas, Apostolos | es_ES |
dc.contributor.author | Mellidou, Ifigeneia | es_ES |
dc.contributor.author | Ganopoulos, Ioannis | es_ES |
dc.date.accessioned | 2022-06-09T18:07:05Z | |
dc.date.available | 2022-06-09T18:07:05Z | |
dc.date.issued | 2021-05-12 | es_ES |
dc.identifier.issn | 1471-2164 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183164 | |
dc.description.abstract | [EN] Background Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. Results In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. Conclusions These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae. | es_ES |
dc.description.sponsorship | BP was funded by Ministerio de Ciencia, Innovacion y Universidades, cofunded with FEDER funds (Project No. AGL2017-85563-C2-1-R) and by PROMETEO project 2017/078 (to promote excellence groups) by the Conselleria d'Educacio, Investigacio, Cultura vertical bar Esports (Generalitat Valenciana). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | BMC Genomics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Gene expression atlas | es_ES |
dc.subject | Cucurbita pepo | es_ES |
dc.subject | RNA-seq,Differential gene expression | es_ES |
dc.subject | Plant growth and development | es_ES |
dc.subject | Cucurbitaceae | es_ES |
dc.subject | Novel genes | es_ES |
dc.subject | Fruit growth and ripening | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s12864-021-07683-2 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F078//SELECCION DE VARIEDADES TRADICIONALES Y DESARROLLO DE NUEVAS VARIEDADES DE CUCURBITACEAS ADAPTADAS A LA PRODUCCION ECOLOGICA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Xanthopoulou, A.; Montero-Pau, J.; Picó Sirvent, MB.; Boumpas, P.; Tsaliki, E.; Paris, HS.; Tsaftaris, A.... (2021). A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics. 22(1):1-17. https://doi.org/10.1186/s12864-021-07683-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s12864-021-07683-2 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33980145 | es_ES |
dc.identifier.pmcid | PMC8114506 | es_ES |
dc.relation.pasarela | S\464777 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Paris HS. A proposed subspecific classification for Cucurbita pepo. Phytologia. 1986;61:133–8. | es_ES |
dc.description.references | Paris HS. History of the cultivar-groups of Cucurbita pepo. In: Janick J, Wiley J, editors. Horticulture Review. New York: John Wiley & Sons; 2000; 25:71–170. | es_ES |
dc.description.references | Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, et al. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J. 2011;9(8):922–31. https://doi.org/10.1111/j.1467-7652.2011.00625.x. | es_ES |
dc.description.references | Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, et al. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics. 2009;10(1):523. https://doi.org/10.1186/1471-2164-10-523. | es_ES |
dc.description.references | Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, et al. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. 2018;16(6):1161–71. https://doi.org/10.1111/pbi.12860. | es_ES |
dc.description.references | Xanthopoulou A, Montero-Pau J, Mellidou I, Kissoudis C, Blanca J, Picó B, et al. Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Hortic Res. 2019;6(1):94. https://doi.org/10.1038/s41438-019-0176-9. | es_ES |
dc.description.references | Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12(1). https://doi.org/10.1186/1471-2164-12-104. | es_ES |
dc.description.references | Xanthopoulou A, Ganopoulos I, Psomopoulos F, Manioudaki M, Moysiadis T, Kapazoglou A, et al. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers. Gene. 2017;622:50–66. https://doi.org/10.1016/j.gene.2017.04.035. | es_ES |
dc.description.references | Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics. 2012;13(1):80. https://doi.org/10.1186/1471-2164-13-80. | es_ES |
dc.description.references | Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez EM, Gómez P, Monforte AJ, et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in zucchini using genotyping-by-sequencing. BMC Genomics. 2017;18(1):94. https://doi.org/10.1186/s12864-016-3439-y. | es_ES |
dc.description.references | Andolfo G, Di Donato A, Darrudi R, Errico A, Cigliano RA, Ercolano MR. Draft of Zucchini (Cucurbita pepo L.) proteome: A resource for genetic and genomic studies. Front Genet 2017;8. | es_ES |
dc.description.references | Pomares-Viciana T, Del Río-Celestino M, Román B, DIe J, Pico B, Gómez P. First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biol. 2019;19:1–20. | es_ES |
dc.description.references | Yano R, Nonaka S, Ezura H. Melonet-DB, a grand RNA-Seq gene expression atlas in melon (Cucumis melo L.). Plant Cell Physiol. 2018;59(1):e4. https://doi.org/10.1093/pcp/pcx193. | es_ES |
dc.description.references | Huang HX, Yu T, Li JX, Qu SP, Wang MM, Wu TQ, et al. Characterization of Cucurbita maxima fruit Metabolomic profiling and Transcriptome to reveal fruit quality and ripening gene expression patterns. J Plant Biol. 2019;62(3):203–16. https://doi.org/10.1007/s12374-019-0015-4. | es_ES |
dc.description.references | Wyatt LE, Strickler SR, Mueller LA, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic Res 2015;2. | es_ES |
dc.description.references | Kudapa H, Garg V, Chitikineni A, Varshney RK. The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ 2018;41. | es_ES |
dc.description.references | Sánchez-Sevilla JF, Vallarino JG, Osorio S, Bombarely A, Posé D, Merchante C, et al. Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa). Sci Rep. 2017;7:1–13. | es_ES |
dc.description.references | Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013;29(10):569–74. https://doi.org/10.1016/j.tig.2013.05.010. | es_ES |
dc.description.references | Ramírez-Tejero JA, Jiménez-Ruiz J, Leyva-Pérez M de la O, Barroso JB, Luque F. Gene expression pattern in olive tree organs (Olea europaea l.). Genes (Basel) 2020;11. | es_ES |
dc.description.references | Sitrit Y, Hadfield KA, Bennett AB, Bradford KJ, Bruce DA. Expression of a polygalacturonase associated with tomato seed germination. Plant Physiol. 1999;121(2):419–28. https://doi.org/10.1104/pp.121.2.419. | es_ES |
dc.description.references | Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00539. | es_ES |
dc.description.references | McKown K, Bergmann DC. Stomatal development in the grasses: lessons from models and crops (and crop models). New Phytol. 2020;227(6):1636–48. https://doi.org/10.1111/nph.16450. | es_ES |
dc.description.references | Park D-Y, Shim Y, Gi E, Lee B-D, Gynheung A, Kang K, et al. The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice. Environ Exp Bot. 2018;156:86–95. https://doi.org/10.1016/j.envexpbot.2018.08.033. | es_ES |
dc.description.references | Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, Muschietti JP. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett. 2018;592(2):233–43. https://doi.org/10.1002/1873-3468.12947. | es_ES |
dc.description.references | Kim D-H, Sung S. Role of VIN3-LIKE 2 in facultative photoperiodic flowering response in Arabidopsis. Plant Signal Behav. 2010;5(12):1672–3. https://doi.org/10.4161/psb.5.12.14035. | es_ES |
dc.description.references | Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R, Kakimoto T, et al. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. Proc Natl Acad Sci U S A. 2012;109. | es_ES |
dc.description.references | Li D, Sheng Y, Niu H, Li Z. Gene interactions regulating sex determination in cucurbits. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01231. | es_ES |
dc.description.references | Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, et al. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol Biol. 2008;66(6):647–61. https://doi.org/10.1007/s11103-008-9296-6. | es_ES |
dc.description.references | Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321(5890):836–8. https://doi.org/10.1126/science.1159023. | es_ES |
dc.description.references | Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, et al. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J. 2018;94(1):169–91. https://doi.org/10.1111/tpj.13838. | es_ES |
dc.description.references | Roldan MVG, Izhaq F, Verdenaud M, Eleblu J, Haraghi A, Sommard V, et al. Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development. Commun Biol. 2020;3(1):239. https://doi.org/10.1038/s42003-020-0969-2. | es_ES |
dc.description.references | García A, Aguado E, Garrido D, Martínez C, Jamilena M. Two androecious mutations reveal the crucial role of ethylene receptors in the initiation of female flower development in Cucurbita pepo. Plant J. 2020;103(4):1548–60. https://doi.org/10.1111/tpj.14846. | es_ES |
dc.description.references | Snouffer A, Kraus C, van der Knaap E. The shape of things to come: ovate family proteins regulate plant organ shape. Curr Opin Plant Biol. 2020;53:98–105. https://doi.org/10.1016/j.pbi.2019.10.005. | es_ES |
dc.description.references | Mohanta TK, Kumar P, Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC Plant Biol. 2017;17(1):38. https://doi.org/10.1186/s12870-017-0989-3. | es_ES |
dc.description.references | Maghiaoui A, Bouguyon E, Cuesta C, et al. The Arabidopsis NRT1. 1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. J Exp Bot. 2020;15:4480–94. | es_ES |
dc.description.references | Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, et al. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. J Exp Bot. 2013;64(14):4541–57. https://doi.org/10.1093/jxb/ert269. | es_ES |
dc.description.references | Haga K, Takano M, Neumann R, Iino M. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for PHOTOTROPISM of coleoptiles and lateral translocation of auxin. Plant Cell. 2015;17:103–15. | es_ES |
dc.description.references | Obrero A, Die JV, Román B, Gómez P, Nadal S, González-Verdejo CI. Selection of reference genes for gene expression studies in zucchini (Cucurbita pepo) using qPCR. J Agric Food Chem. 2011;59(10):5402–11. https://doi.org/10.1021/jf200689r. | es_ES |
dc.description.references | Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, et al. Zucchini plants Alter gene expression and emission of (E)-β-Caryophyllene following Aphis gossypii infestation. Front Plant Sci. 2021;11:2089. | es_ES |
dc.description.references | Chen Y, Xu X, Chen X, Chen Y, Zhang Z, Xuhan X, et al. Seed-specific gene MOTHER of FT and TFL1 MFT involved in embryogenesis, hormones and stress responses in Dimocarpus longan Lour. Int J Mol Sci. 2018;19(8):2403. https://doi.org/10.3390/ijms19082403. | es_ES |
dc.description.references | Petrella R, Caselli F, Roig-Villanova I, Vignati V, Chiara M, Ezquer I, et al. BPC transcription factors and a Polycomb group protein confine the expression of the ovule identity gene SEEDSTICK in Arabidopsis. Plant J. 2020;102(3):582–99. https://doi.org/10.1111/tpj.14673. | es_ES |
dc.description.references | Eleblu JSY, Haraghi A, Mania B, Camps C, Rashid D, Morin H, et al. The gynoecious CmWIP1 transcription factor interacts with CmbZIP48 to inhibit carpel development. Sci Rep. 2019;9(1):15443. https://doi.org/10.1038/s41598-019-52004-z. | es_ES |
dc.description.references | Plackett ARG, Wilson ZA. Gibberellins and plant reproduction. In: Annual Plant Reviews online. 2017. https://doi.org/10.1002/9781119312994.apr0540. | es_ES |
dc.description.references | Gu R, Song X, Liu X, Yan L, Zhou Z, Zhang X. Genome-wide analysis of CsWOX transcription factor gene family in cucumber (Cucumis sativus L.). Sci Rep 2020;10. | es_ES |
dc.description.references | Zhang S, Wang L, Sun X, Li Y, Yao J, van Nocker S, et al. Genome-wide analysis of the YABBY gene family in grapevine and functional characterization of VvYABBY4. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.01207. | es_ES |
dc.description.references | Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016;35(5):949–65. https://doi.org/10.1007/s00299-016-1948-4. | es_ES |
dc.description.references | Miao H, Sun P, Liu W, Xu B, Jin Z. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit. PLoS One. 2014;9(2):e88077. https://doi.org/10.1371/journal.pone.0088077. | es_ES |
dc.description.references | Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. Front Plant Sci. 2020;11. https://doi.org/10.3389/fpls.2020.564917. | es_ES |
dc.description.references | Mellidou I, Chagne D, Laing WA. Allelic variation in Paralogs of GDP-L-Galactose Phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Phys. 2012;160(3):1613–29. https://doi.org/10.1104/pp.112.203786. | es_ES |
dc.description.references | Mellidou I, Keulemans J, Kanellis AK, Davey MW. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol. 2012;12(1):239. https://doi.org/10.1186/1471-2229-12-239. | es_ES |
dc.description.references | Chatzopoulou F, Sanmartin M, Mellidou I, Pateraki I, Koukounaras A, Tanou G, et al. Silencing of ascorbate oxidase results in reduced growth, altered ascorbic acid levels and ripening pattern in melon fruit. Plant Physiol Biochem. 2020;156:291–303. https://doi.org/10.1016/j.plaphy.2020.08.040. | es_ES |
dc.description.references | Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317. | es_ES |
dc.description.references | Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67. https://doi.org/10.1038/nprot.2016.095. | es_ES |
dc.description.references | Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78. https://doi.org/10.1038/nprot.2012.016. | es_ES |
dc.description.references | Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616. | es_ES |
dc.description.references | Machado FB, Moharana KC, Almeida-Silva F, Gazara RK, Pedrosa-Silva F, Coelho FS, et al. Systematic analysis of 1298 RNA-Seq samples and construction of a comprehensive soybean (Glycine max) expression atlas. Plant J. 2020;103(5):1894–909. https://doi.org/10.1111/tpj.14850. | es_ES |
dc.description.references | Claverie JM, Ta TN. ACDtool: a web-server for the generic analysis of large data sets of counts. Bioinformatics. 2019;35(1):170–1. https://doi.org/10.1093/bioinformatics/bty640. | es_ES |
dc.description.references | Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.42.0. 2020; https://doi.org/10.18129/B9.bioc.topGO | es_ES |
dc.description.references | Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27. | es_ES |
dc.description.references | Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1). https://doi.org/10.1186/1471-2105-9-559. | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |