- -

On how to generalize specie-specific conceptual schemes to generate a species-independent Conceptual Schema of the Genome

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On how to generalize specie-specific conceptual schemes to generate a species-independent Conceptual Schema of the Genome

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Simón, Alberto es_ES
dc.contributor.author Casamayor Rodenas, Juan Carlos es_ES
dc.date.accessioned 2022-06-09T18:07:06Z
dc.date.available 2022-06-09T18:07:06Z
dc.date.issued 2021-09-30 es_ES
dc.identifier.issn 1471-2105 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183165
dc.description.abstract [EN] Background Understanding the genome, with all of its components and intrinsic relationships, is a great challenge. Conceptual modeling techniques have been used as a means to face this challenge. The heterogeneity and idiosyncrasy of genomic use cases mean that conceptual modeling techniques are used to generate conceptual schemes that focus on too specific scenarios (i.e., they are species-specific conceptual schemes). Our research group developed two different conceptual schemes. The first one is the Conceptual Schema of the Human Genome, which is intended to improve Precision Medicine and genetic diagnosis. The second one is the Conceptual Schema of the Citrus Genome, which is intended to identify the genetic cause of relevant phenotypes in the agri-food field. Methods Our two conceptual schemes have been ontologically compared to identify their similarities and differences. Based on this comparison, several changes have been performed in the Conceptual Schema of the Human Genome in order to obtain the first version of a species-independent Conceptual Schema of the Genome. Identifying the different genome information items used in each genomic case study has been essential in achieving our goal. The changes needed to provide an expanded, more generic version of the Conceptual Schema of the Human Genome are analyzed and discussed. Results This work presents a new CS called the Conceptual Schema of the Genome that is ready to be adapted to any specific working genome-based context (i.e., species-independent). Conclusion The generated Conceptual Schema of the Genome works as a global, generic element from which conceptual views can be created in order to work with any specific species. This first working version can be used in the human use case, in the citrus use case, and, potentially, in more use cases of other species. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation through Project DataME (ref: TIN2016-80811-P) and the Generalitat Valenciana through project GISPRO (PROMETEO/2018/176). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Bioinformatics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Conceptual modeling es_ES
dc.subject Genomics es_ES
dc.subject Bioinformatics es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title On how to generalize specie-specific conceptual schemes to generate a species-independent Conceptual Schema of the Genome es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12859-021-04237-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//TIN2016-80811-P//UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F176//GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation García-Simón, A.; Casamayor Rodenas, JC. (2021). On how to generalize specie-specific conceptual schemes to generate a species-independent Conceptual Schema of the Genome. BMC Bioinformatics. 22(13):1-26. https://doi.org/10.1186/s12859-021-04237-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12859-021-04237-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 13 es_ES
dc.identifier.pmid 34592923 es_ES
dc.identifier.pmcid PMC8482561 es_ES
dc.relation.pasarela S\446565 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Mylopoulos J. Conceptual modelling and Telos. 1992;49–68. es_ES
dc.description.references Delcambre L, Liddle S, Pastor O, Storey V. A reference framework for conceptual modeling: focusing on conceptual modeling research. Technical report, Portland State University; 2018. https://doi.org/10.13140/RG.2.2.33041.07521. es_ES
dc.description.references Pearson H. What is a gene? Nat Publ Group. 2006. https://doi.org/10.1038/441398a. es_ES
dc.description.references Smirnov A, Schneider C, Hör J, Vogel J. Discovery of new RNA classes and global RNA-binding proteins. Elsevier; 2017. https://doi.org/10.1016/j.mib.2017.11.016. es_ES
dc.description.references Palacio AL, Fernández IP, López OP. Genomic Information Systems applied to precision medicine: genomic data management for Alzheimer’s disease treatment. In: International conference on information systems development (ISD); 2018. https://aisel.aisnet.org/isd2014/proceedings2018/eHealth/6. es_ES
dc.description.references Palacio AL, López Ó P. Towards an effective medicine of precision by using conceptual modelling of the genome. In: Proceedings of the international conference on software engineering. New York: IEEE Computer Society; 2018. p. 14–7. https://doi.org/10.1145/3194696.3194700. es_ES
dc.description.references Román JFR, López ÓP. Use of GeIS for early diagnosis of alcohol sensitivity. In: BIOINFORMATICS 2016—7th International conference on bioinformatics models, methods and algorithms, proceedings; part of 9th international joint conference on biomedical engineering systems and technologies, BIOSTEC. SCITEPRESS-Science and and Technology Publications; 2016. p. 284–9. https://doi.org/10.5220/0005822902840289. es_ES
dc.description.references León Palacio A, García Giménez A, Casamayor Ródenas JC, Reyes Román JF. Genomic data management in big data environments: the colorectal cancer case. In: Woo C, Lu J, Li Z, Ling TW, Li G, Lee ML, editors. Advances in conceptual modeling, Lecture notes in computer science, vol. 11158. Cham: Springer; 2018. p. 319–29. https://doi.org/10.1007/978-3-030-01391-2_36. Accessed 16 Feb 2021. es_ES
dc.description.references Navarrete-Hidalgo M, Reyes Román JF, Pastor López O. Design and implementation of a Geis for the Genomic Diagnosis using the SILE Methodology. Case study: congenital cataract:. In: Proceedings of the 13th international conference on evaluation of novel approaches to software engineering. SCITEPRESS—Science and Technology Publications, Funchal, Madeira; 2018. p. 267–74. https://doi.org/10.5220/0006705802670274. Accessed Feb 16 2021. es_ES
dc.description.references Reyes Román JF, García A, Rueda U, Pastor O. GenesLove.Me 2.0: improving the prioritization of genetic variations. In: Damiani E, Spanoudakis G, Maciaszek LA, editors. Evaluation of novel approaches to software engineering, Communications in computer and information science, vol 1023. Cham: Springer; 2019. p. 314–33. https://doi.org/10.1007/978-3-030-22559-9_14. Accessed 16 Feb 2021. es_ES
dc.description.references Reyes Román JF, Roldán Martínez D, García Simón A, Rueda U, Pastor O. VarSearch: annotating variations using an e-Genomics Framework:. In: Proceedings of the 13th international conference on evaluation of novel approaches to software engineering. SCITEPRESS—Science and Technology Publications, Funchal, Madeira, Portugal; 2018. p. 328–34. https://doi.org/10.5220/0006781103280334. Accessed 16 Feb 2021. es_ES
dc.description.references Iñiguez-Jarrín C, Alberto GS, Reyes JF, López, Ó P. GenDomus: interactive and collaboration mechanisms for diagnosing genetic diseases. In: ENASE 2017—proceedings of the 12th international conference on evaluation of novel approaches to software engineering. 2017; p. 91–102. https://doi.org/10.5220/0006324000910102. es_ES
dc.description.references García SA, Reyes Román JF, Casamayor JC, Pastor O. Towards an effective and efficient management of genome data: an information systems engineering perspective. In: Cappiello C, Ruiz M, editors. Information systems engineering in responsible information systems, lecture notes in business information processing, vol 350. Cham: Springer; 2019. p. 99–110. https://doi.org/10.1007/978-3-030-21297-1_9. es_ES
dc.description.references Reyes Román JF. Diseño y Desarrollo de un Sistema de Información Genómica Basado en un Modelo Conceptual Holístico del Genoma Humano. PhD thesis, Universitat Politècnica de València; 2018. https://riunet.upv.es/handle/10251/99565. es_ES
dc.description.references Publishing W (ed.): The Genus Citrus. Elsevier; 2020. https://doi.org/10.1016/C2016-0-02375-6. Accessed 16 Feb 2021. es_ES
dc.description.references Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C, Domingo C, Tadeo FR, Carbonell-Caballero J, Alonso R, Curk F, Du D, Ollitrault P, Roose ML, Dopazo J, Gmitter FG, Rokhsar DS, Talon M. Genomics of the origin and evolution of Citrus. Nature. 2018;554(7692):311–6. https://doi.org/10.1038/nature25447. es_ES
dc.description.references García S, A, Pastor O. CSCG: Conceptual Schema of the Citrus Genome. Technical report, Polytechnic University of Valencia, Spain; 2020. http://hdl.handle.net/10251/144234. es_ES
dc.description.references Cooper GM, Cooper GM. The cell, 2nd edn. Sinauer Associates; 2000. es_ES
dc.description.references Eichler EE, Sankoff D. Structural dynamics of eukaryotic chromosome evolution. Science. 2003;301(5634):793–7. https://doi.org/10.1126/science.1086132. es_ES
dc.description.references Bell SP, Dutta A. DNA replication in Eukaryotic cells. Annu Rev Biochem. 2002;71(1):333–74. https://doi.org/10.1146/annurev.biochem.71.110601.135425. es_ES
dc.description.references Heinzelmann R, et al. Chromosomal assembly and analyses of genome-wide recombination rates in the forest pathogenic fungus Armillaria ostoyae. Heredity. 2020;124(6):699–713. https://doi.org/10.1038/s41437-020-0306-z. es_ES
dc.description.references Griffiths PE, Tabery J. Behavioral genetics and development: historical and conceptual causes of controversy; Pergamon. 2008. https://doi.org/10.1016/j.newideapsych.2007.07.016. es_ES
dc.description.references Meaney MJ. Epigenetics and the biological definition of gene X environment interactions. Wiley; 2010. https://doi.org/10.1111/j.1467-8624.2009.01381.x. es_ES
dc.description.references Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M. What is a gene, post-ENCODE? History and updated definition. Cold Spring Harbor Laboratory Press; 2007. es_ES
dc.description.references Yu P, Ma D, Xu M. Nested genes in the human genome. Genomics. 2005;86(4):414–22. https://doi.org/10.1016/j.ygeno.2005.06.008. es_ES
dc.description.references Herai RH, Yamagishi MEB. Detection of human interchromosomal trans-splicing in sequence databanks. Brief Bioinfor. 2010;11(2):198–209. https://doi.org/10.1093/bib/bbp041. es_ES
dc.description.references Campbell PN, Smith AD, Peters TJ. Biochemistry illustrated: biochemistry and molecular biology in the post-genomic era, 5th edn. Edinburgh: Elsevier; 2005. p. 242. es_ES
dc.description.references Ghada B, Amel O, Aymen M, Aymen A, Amel SH. Phylogenetic patterns and molecular evolution among ‘True citrus fruit trees’ group (Rutaceae family and Aurantioideae subfamily). Sci Hortic. 2019;253:87–98. https://doi.org/10.1016/j.scienta.2019.04.011. es_ES
dc.description.references Rose AB. Intron-mediated regulation of gene expression. Springer; 2008. es_ES
dc.description.references Rose AB. Introns as gene regulators: a brick on the accelerator. Front Genet. 2019;10:672. https://doi.org/10.3389/fgene.2018.00672. es_ES
dc.description.references Michael IP, et al. Intron retention: a common splicing event within the human kallikrein gene family. Clin Chem. 2005;51(3):506–15. https://doi.org/10.1373/clinchem.2004.042341. es_ES
dc.description.references Zhang D, et al. Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 2020;11(1):1–19. https://doi.org/10.1038/s41467-020-15815-7. es_ES
dc.description.references Heger A, Holm L. Exhaustive enumeration of protein domain families. J Mol Biol. 2003;328(3):749–67. https://doi.org/10.1016/S0022-2836(03)00269-9. es_ES
dc.description.references Whiffin N, et al. Characterising the loss-of-function impact of 5′ untranslated region variants in 15,708 individuals. Nat Commun. 2020;11(1):1–12. https://doi.org/10.1038/s41467-019-10717-9. es_ES
dc.description.references Miller JB, Pickett BD, Ridge PG. JustOrthologs: a fast, accurate and user-friendly ortholog identification algorithm. Bioinformatics. 2019;35(4):546–52. https://doi.org/10.1093/bioinformatics/bty669. es_ES
dc.description.references Train CM, Glover NM, Gonnet GH, Altenhoff AM, Dessimoz C. Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference. Bioinformatics. 2017;33(14):75–82. https://doi.org/10.1093/bioinformatics/btx229. es_ES
dc.description.references Janzen GM, Wang L, Hufford MB. The extent of adaptive wild introgression in crops; 2019. https://doi.org/10.1111/nph.15457. es_ES
dc.description.references Belmont JW, et al. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. https://doi.org/10.1038/nature04226. es_ES
dc.description.references Chen C, Gmitter FG. Mining of haplotype-based expressed sequence tag single nucleotide polymorphismsin citrus. BMC Genomics. 2013. https://doi.org/10.1186/1471-2164-14-746. es_ES
dc.description.references Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(suppl 1):277–80. https://doi.org/10.1093/nar/gkh063. es_ES
dc.description.references Nomenclature committee of the international union of biochemistry and molecular biology (NC-IUBMB), Enzyme Supplement 5 (1999). European Journal of Biochemistry. 1999;264(2):610–50. es_ES
dc.description.references Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes J, Kattman BL, Maglott DR. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):1062–7. https://doi.org/10.1093/nar/gkx1153. es_ES
upv.costeAPC 2000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem