- -

CO2 Reduction over Mo2C-Based Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CO2 Reduction over Mo2C-Based Catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marquar, Wijnand es_ES
dc.contributor.author Raseale, Shaine es_ES
dc.contributor.author Prieto González, Gonzalo es_ES
dc.contributor.author Zimina, Anna es_ES
dc.contributor.author Bikash Sarma, Bidyut es_ES
dc.contributor.author Grunwaldt, Jan-Dierk es_ES
dc.contributor.author Claeys, Michael es_ES
dc.contributor.author Fischer, Nico es_ES
dc.date.accessioned 2022-06-10T18:06:51Z
dc.date.available 2022-06-10T18:06:51Z
dc.date.issued 2021-02-05 es_ES
dc.identifier.issn 2155-5435 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183199
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c05019 es_ES
dc.description.abstract [EN] Four Mo-based catalysts were prepared via three different synthesis techniques supported on SiO2 and/or SBA-15. By means of complementary in situ characterization techniques, the carburization process and the final characteristics of these catalysts were investigated. Additionally, the four catalysts were evaluated for the activation of CO2 in the absence and presence of H-2 (reverse water-gas shift, RWGS). The results suggest that CO2 reacts via a dissociation on the carbide surface, forming adsorbed oxygen surface species. Severe oxidation of the carbide into its oxidic phases (MoO2 or MoO3) only occurs at temperatures above 850 K in the presence of CO2. O-2 dissociates on the carbide surface when introduced at low concentrations (1 vol %) at room temperature, but when exposed to higher concentrations, a strong exothermic bulk re-oxidation reaction occurs, forming MoO2. All four catalysts show high RWGS activity in terms of CO2 conversions with a minimum CO selectivity of 98% without any signs of bulk catalyst oxidation. Although minimal, the observed deactivation is suggested to be primarily due to phase changes between Mo2C allotropes (beta-phase, oxycarbide, and eta-phase) and/or sintering of the active phase. es_ES
dc.description.sponsorship All members affiliated with the Catalysis Institute and c*change would like to gratefully acknowledge the financial support received from the DST-NRF Centre of Excellence in Catalysis (c*change) and the University of Cape Town (UCT). We acknowledge Diamond Light Source for time on B18 as part of the Block Allocation Group beamtime of the UK Catalysis Hub in December 2018. A special thanks goes out to R. Cerpath and M. Malatji for their contributions in RWGS catalyst testing as part of their B.Sc. final year project; S. Govender, R. Geland, S. Klink, and S. Nyimbinya of the Analytical Laboratory in the Department of Chemical Engineering at UCT for the BET and ICP-OES analysis. M. Jaffer (UCT) for his support with the TEM analysis; M. Waldron for her assistance in the offline Raman analysis; and J. Callison and M. Panchal for their assistance in the offline XAS data acquisition. A. Mun~oz and I. Lopez (ITQ) are acknowledged for technical assistance with in situ Raman studies. We would like to thank the Institute for Beam Physics and Technology (IBPT) for the operation of the storage ring, the Karlsruhe Research Accelerator (KARA). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbon dioxide es_ES
dc.subject Hydrogen es_ES
dc.subject Reverse water-gas shift es_ES
dc.subject Molybdenum carbide es_ES
dc.subject In situ XRD es_ES
dc.subject In situ Raman spectroscopy es_ES
dc.subject In situ XAS es_ES
dc.title CO2 Reduction over Mo2C-Based Catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscatal.0c05019 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Marquar, W.; Raseale, S.; Prieto González, G.; Zimina, A.; Bikash Sarma, B.; Grunwaldt, J.; Claeys, M.... (2021). CO2 Reduction over Mo2C-Based Catalysts. ACS Catalysis. 11(3):1624-1639. https://doi.org/10.1021/acscatal.0c05019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscatal.0c05019 es_ES
dc.description.upvformatpinicio 1624 es_ES
dc.description.upvformatpfin 1639 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\463151 es_ES
dc.contributor.funder University of Cape Town es_ES
dc.contributor.funder National Research Foundation, South Africa es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem