Mostrar el registro sencillo del ítem
dc.contributor.author | Jensen, Zach | es_ES |
dc.contributor.author | Kwon, Soonhyoung | es_ES |
dc.contributor.author | Schwalbe-Koda, Daniel | es_ES |
dc.contributor.author | Paris, Cecilia | es_ES |
dc.contributor.author | Gómez-Bombarelli, Rafael | es_ES |
dc.contributor.author | Román-Leshkov, Yuriy | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Olivetti, Elsa A. | es_ES |
dc.date.accessioned | 2022-06-13T18:05:00Z | |
dc.date.available | 2022-06-13T18:05:00Z | |
dc.date.issued | 2021-05-26 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183243 | |
dc.description.abstract | [EN] Organic structure directing agents (OSDAs) play a crucial role in the synthesis of micro- and mesoporous materials especially in the case of zeolites. Despite the wide use of OSDAs, their interaction with zeolite frameworks is poorly understood, with researchers relying on synthesis heuristics or computationally expensive techniques to predict whether an organic molecule can act as an OSDA for a certain zeolite. In this paper, we undertake a data-driven approach to unearth generalized OSDA-zeolite relationships using a comprehensive database comprising of 5,663 synthesis routes for porous materials. To generate this comprehensive database, we use natural language processing and text mining techniques to extract OSDAs, zeolite phases, and gel chemistry from the scientific literature published between 1966 and 2020. Through structural featurization of the OSDAs using weighted holistic invariant molecular (WHIM) descriptors, we relate OSDAs described in the literature to different types of cage-based, small-pore zeolites. Lastly, we adapt a generative neural network capable of suggesting new molecules as potential OSDAs for a given zeolite structure and gel chemistry. We apply this model to CHA and SFW zeolites generating several alternative OSDA candidates to those currently used in practice. These molecules are further vetted with molecular mechanics simulations to show the model generates physically meaningful predictions. Our model can automatically explore the OSDA space, reducing the amount of simulation or experimentation needed to find new OSDA candidates. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Goverment under Awards "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033-BI00 (MCIU/AEI/FEDER, UE) and Generalitat Valenciana under Award AICO/2019/060 for support. We would like to acknowledge partial funding from the National Science Foundation DMREF Awards 1922311, 1922372, and 1922090, the Office of Naval Research (ONR) under contract N00014-20-1-2280, the MIT Energy Initiative, and MIT International Science and Technology Initiatives (MISTI) Seed Funds. Z.J. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. D.S.-K. was additionally funded by the MIT Energy Fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Central Science | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acscentsci.1c00024 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1922311//DMREF Awards/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1922372//DMREF Awards/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1922090//DMREF Awards/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-20-1-2280/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//AICO%2F2019%2F060//Diseño racionalizado de catalizadores multifuncionales para la conversión eficiente de metano a moléculas plataforma para la industria química./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Jensen, Z.; Kwon, S.; Schwalbe-Koda, D.; Paris, C.; Gómez-Bombarelli, R.; Román-Leshkov, Y.; Corma Canós, A.... (2021). Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks. ACS Central Science. 7(5):858-867. https://doi.org/10.1021/acscentsci.1c00024 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acscentsci.1c00024 | es_ES |
dc.description.upvformatpinicio | 858 | es_ES |
dc.description.upvformatpfin | 867 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2374-7951 | es_ES |
dc.identifier.pmid | 34079901 | es_ES |
dc.identifier.pmcid | PMC8161479 | es_ES |
dc.relation.pasarela | S\456200 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | U.S. Department of Defense | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD | es_ES |