- -

Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jensen, Zach es_ES
dc.contributor.author Kwon, Soonhyoung es_ES
dc.contributor.author Schwalbe-Koda, Daniel es_ES
dc.contributor.author Paris, Cecilia es_ES
dc.contributor.author Gómez-Bombarelli, Rafael es_ES
dc.contributor.author Román-Leshkov, Yuriy es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Olivetti, Elsa A. es_ES
dc.date.accessioned 2022-06-13T18:05:00Z
dc.date.available 2022-06-13T18:05:00Z
dc.date.issued 2021-05-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183243
dc.description.abstract [EN] Organic structure directing agents (OSDAs) play a crucial role in the synthesis of micro- and mesoporous materials especially in the case of zeolites. Despite the wide use of OSDAs, their interaction with zeolite frameworks is poorly understood, with researchers relying on synthesis heuristics or computationally expensive techniques to predict whether an organic molecule can act as an OSDA for a certain zeolite. In this paper, we undertake a data-driven approach to unearth generalized OSDA-zeolite relationships using a comprehensive database comprising of 5,663 synthesis routes for porous materials. To generate this comprehensive database, we use natural language processing and text mining techniques to extract OSDAs, zeolite phases, and gel chemistry from the scientific literature published between 1966 and 2020. Through structural featurization of the OSDAs using weighted holistic invariant molecular (WHIM) descriptors, we relate OSDAs described in the literature to different types of cage-based, small-pore zeolites. Lastly, we adapt a generative neural network capable of suggesting new molecules as potential OSDAs for a given zeolite structure and gel chemistry. We apply this model to CHA and SFW zeolites generating several alternative OSDA candidates to those currently used in practice. These molecules are further vetted with molecular mechanics simulations to show the model generates physically meaningful predictions. Our model can automatically explore the OSDA space, reducing the amount of simulation or experimentation needed to find new OSDA candidates. es_ES
dc.description.sponsorship The authors thank the Spanish Goverment under Awards "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033-BI00 (MCIU/AEI/FEDER, UE) and Generalitat Valenciana under Award AICO/2019/060 for support. We would like to acknowledge partial funding from the National Science Foundation DMREF Awards 1922311, 1922372, and 1922090, the Office of Naval Research (ONR) under contract N00014-20-1-2280, the MIT Energy Initiative, and MIT International Science and Technology Initiatives (MISTI) Seed Funds. Z.J. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program. D.S.-K. was additionally funded by the MIT Energy Fellowship. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Central Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscentsci.1c00024 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1922311//DMREF Awards/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1922372//DMREF Awards/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1922090//DMREF Awards/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-20-1-2280/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//AICO%2F2019%2F060//Diseño racionalizado de catalizadores multifuncionales para la conversión eficiente de metano a moléculas plataforma para la industria química./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Jensen, Z.; Kwon, S.; Schwalbe-Koda, D.; Paris, C.; Gómez-Bombarelli, R.; Román-Leshkov, Y.; Corma Canós, A.... (2021). Discovering Relationships between OSDAs and Zeolites through Data Mining and Generative Neural Networks. ACS Central Science. 7(5):858-867. https://doi.org/10.1021/acscentsci.1c00024 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscentsci.1c00024 es_ES
dc.description.upvformatpinicio 858 es_ES
dc.description.upvformatpfin 867 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2374-7951 es_ES
dc.identifier.pmid 34079901 es_ES
dc.identifier.pmcid PMC8161479 es_ES
dc.relation.pasarela S\456200 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder U.S. Department of Defense es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem