- -

Compositional Data Analysis of Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compositional Data Analysis of Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Greenacre, Michael es_ES
dc.contributor.author Martínez-Álvaro, Marina es_ES
dc.contributor.author Blasco Mateu, Agustín es_ES
dc.date.accessioned 2022-06-16T18:05:43Z
dc.date.available 2022-06-16T18:05:43Z
dc.date.issued 2021-10-11 es_ES
dc.identifier.issn 1664-302X es_ES
dc.identifier.uri http://hdl.handle.net/10251/183405
dc.description.abstract [EN] Microbiome and omics datasets are, by their intrinsic biological nature, of high dimensionality, characterized by counts of large numbers of components (microbial genes, operational taxonomic units, RNA transcripts, etc.). These data are generally regarded as compositional since the total number of counts identified within a sample is irrelevant. The central concept in compositional data analysis is the logratio transformation, the simplest being the additive logratios with respect to a fixed reference component. A full set of additive logratios is not isometric, that is they do not reproduce the geometry of all pairwise logratios exactly, but their lack of isometry can be measured by the Procrustes correlation. The reference component can be chosen to maximize the Procrustes correlation between the additive logratio geometry and the exact logratio geometry, and for high-dimensional data there are many potential references. As a secondary criterion, minimizing the variance of the reference component's log-transformed relative abundance values makes the subsequent interpretation of the logratios even easier. On each of three high-dimensional omics datasets the additive logratio transformation was performed, using references that were identified according to the abovementioned criteria. For each dataset the compositional data structure was successfully reproduced, that is the additive logratios were very close to being isometric. The Procrustes correlations achieved for these datasets were 0.9991, 0.9974, and 0.9902, respectively. We thus demonstrate, for high-dimensional compositional data, that additive logratios can provide a valid choice as transformed variables, which (a) are subcompositionally coherent, (b) explain 100% of the total logratio variance and (c) come measurably very close to being isometric. The interpretation of additive logratios is much simpler than the complex isometric alternatives and, when the variance of the log-transformed reference is very low, it is even simpler since each additive logratio can be identified with a corresponding compositional component. es_ES
dc.description.sponsorship Support is acknowledged from the Spanish National Plan of Scientific Research, Project PID2020-115558GB-C21. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Compositional data es_ES
dc.subject Dimension reduction es_ES
dc.subject Logratio transformation es_ES
dc.subject Logratio geometry es_ES
dc.subject Logratio variance es_ES
dc.subject Procrustes correlation es_ES
dc.subject Variable selection es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Compositional Data Analysis of Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmicb.2021.727398 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115558GB-C21/ES/CREACION DE DOS LINEAS SELECCIONADAS POR EFICIENCIA ALIMENTARIA Y POR RESILIENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F349//AUMENTO DE LA LONGEVIDAD Y LA RESILIENCIA EN LINEAS MATERNAS COMERCIALES DE CONEJO / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Greenacre, M.; Martínez-Álvaro, M.; Blasco Mateu, A. (2021). Compositional Data Analysis of Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation. Frontiers in Microbiology. 12:1-11. https://doi.org/10.3389/fmicb.2021.727398 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmicb.2021.727398 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.identifier.pmid 34737726 es_ES
dc.identifier.pmcid PMC8561721 es_ES
dc.relation.pasarela S\460943 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
upv.costeAPC 3700 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem