Mostrar el registro sencillo del ítem
dc.contributor.author | Trull, Oscar | es_ES |
dc.contributor.author | García-Díaz, J. Carlos | es_ES |
dc.contributor.author | Troncoso, Alicia | es_ES |
dc.date.accessioned | 2022-06-20T18:05:10Z | |
dc.date.available | 2022-06-20T18:05:10Z | |
dc.date.issued | 2021-09-15 | es_ES |
dc.identifier.issn | 0360-5442 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183486 | |
dc.description.abstract | [EN] Transmission System Operators provide forecasts of electricity demand to the electricity system. The producers and sellers use this information to establish the next day production units planning and prices. The results obtained are very accurate. However, they have a great deal with special events forecasting. Special events produce anomalous load conditions, and the models used to provide predictions must react properly against these situations. In this article, a new forecasting method based on multiple seasonal Holt-Winters modelling including discrete-interval moving seasonalities is applied to the Spanish hourly electricity demand to predict holidays with a 24-h prediction horizon. It allows the model to integrate the anomalous load within the model. The main results show how the new proposal outperforms regular methods and reduces the forecasting error from 9.5% to under 5% during holidays. | es_ES |
dc.description.sponsorship | The authors would like to thank the Spanish Ministry of Science, Innovation and Universities for the support under the project TIN201788209C2; and Red Electrica de Espana S.A. for providing the data used in this article. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Energy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Time series | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Electricity demand | es_ES |
dc.subject | Anomalous load | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.energy.2021.120966 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88209-C2-1-R/ES/BIG DATA STREAMING: ANALISIS DE DATOS MASIVOS CONTINUOS. MODELOS PREDICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Trull, O.; García-Díaz, JC.; Troncoso, A. (2021). One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities. Energy. 231:1-12. https://doi.org/10.1016/j.energy.2021.120966 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.energy.2021.120966 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 231 | es_ES |
dc.relation.pasarela | S\438400 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |