- -

One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trull, Oscar es_ES
dc.contributor.author García-Díaz, J. Carlos es_ES
dc.contributor.author Troncoso, Alicia es_ES
dc.date.accessioned 2022-06-20T18:05:10Z
dc.date.available 2022-06-20T18:05:10Z
dc.date.issued 2021-09-15 es_ES
dc.identifier.issn 0360-5442 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183486
dc.description.abstract [EN] Transmission System Operators provide forecasts of electricity demand to the electricity system. The producers and sellers use this information to establish the next day production units planning and prices. The results obtained are very accurate. However, they have a great deal with special events forecasting. Special events produce anomalous load conditions, and the models used to provide predictions must react properly against these situations. In this article, a new forecasting method based on multiple seasonal Holt-Winters modelling including discrete-interval moving seasonalities is applied to the Spanish hourly electricity demand to predict holidays with a 24-h prediction horizon. It allows the model to integrate the anomalous load within the model. The main results show how the new proposal outperforms regular methods and reduces the forecasting error from 9.5% to under 5% during holidays. es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry of Science, Innovation and Universities for the support under the project TIN201788209C2; and Red Electrica de Espana S.A. for providing the data used in this article. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Time series es_ES
dc.subject Forecasting es_ES
dc.subject Electricity demand es_ES
dc.subject Anomalous load es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.energy.2021.120966 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88209-C2-1-R/ES/BIG DATA STREAMING: ANALISIS DE DATOS MASIVOS CONTINUOS. MODELOS PREDICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Trull, O.; García-Díaz, JC.; Troncoso, A. (2021). One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities. Energy. 231:1-12. https://doi.org/10.1016/j.energy.2021.120966 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.energy.2021.120966 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 231 es_ES
dc.relation.pasarela S\438400 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem