Mostrar el registro sencillo del ítem
dc.contributor.author | Barja, M. Victoria | es_ES |
dc.contributor.author | RODRIGUEZ CONCEPCIÓN, M. | es_ES |
dc.date.accessioned | 2022-06-20T18:05:30Z | |
dc.date.available | 2022-06-20T18:05:30Z | |
dc.date.issued | 2021-05-30 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183498 | |
dc.description.abstract | [EN] Plant isoprenoids (also known as terpenes or terpenoids) are a wide family of primary and secondary metabolites with multiple functions. In particular, most photosynthesis-related isoprenoids (including carotenoids and chlorophylls) as well as diterpenes and polyterpenes derive from geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) enzymes in several cell compartments. Plant genomes typically harbor multiple copies of differentially expressed genes encoding GGPPS-like proteins. While sequence comparisons allow to identify potential GGPPS candidates, experimental evidence is required to ascertain their enzymatic activity and biological function. Actually, functional analyses of the full set of potential GGPPS paralogs are only available for a handful of plant species. Here we review our current knowledge on the GGPPS families of the model plant Arabidopsis thaliana and the crop species rice (Oryza sativa), pepper (Capsicum annuum) and tomato (Solanum lycopersicum). The results indicate that a major determinant of the biological role of particular GGPPS paralogs is the expression profile of the corresponding genes even though specific interactions with other proteins (including GGPP-consuming enzymes) might also contribute to subfunctionalization. In some species, however, a single GGPPS isoforms appears to be responsible for the production of most if not all GGPP required for cell functions. Deciphering the mechanisms regulating GGPPS activity in particular cell compartments, tissues, organs and plant species will be very useful for future metabolic engineering approaches aimed to manipulate the accumulation of particular GGPP-derived products of interest without negatively impacting the levels of other isoprenoids required to sustain essential cell functions. | es_ES |
dc.description.sponsorship | Work in our lab is funded by grants BIO2017-84041-P from the Spanish Agencia Estatal de Investigacion (AEI) and 2017SGR-710 from Generalitat de Catalunya to MRC. MVB was supported by PhD fellowship FPU14/05142 from the Spanish Ministerio de Educacion y Cultura. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | aBIOTECH (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Geranylgeranyl diphosphate | es_ES |
dc.subject | GGPP | es_ES |
dc.subject | GGPP synthase | es_ES |
dc.subject | Isoprenoid | es_ES |
dc.subject | Isoprenyl transferase | es_ES |
dc.title | Plant geranylgeranyl diphosphate synthases: every (gene) family has a story | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s42994-021-00050-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-84041-P/ES/NUEVAS HERRAMIENTAS BIOTECNOLOGICAS PARA MEJORAR LA PRODUCCION Y EL ALMACENAJE DE VITAMINAS A Y E EN CELULAS VEGETALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GC//2017SGR-710/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F05142/ES/FPU14%2F05142/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F05142/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Barja, MV.; Rodriguez Concepción, M. (2021). Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. aBIOTECH (Online). 2:289-298. https://doi.org/10.1007/s42994-021-00050-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s42994-021-00050-5 | es_ES |
dc.description.upvformatpinicio | 289 | es_ES |
dc.description.upvformatpfin | 298 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.identifier.eissn | 2662-1738 | es_ES |
dc.relation.pasarela | S\462375 | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Educación y Cultura | es_ES |
dc.description.references | Araki N, Kusumi K, Masamoto K, Niwa Y, Iba K (2000) Temperature -sensitive Arabidopsis mutant defective in 1-deoxy-d-xylulose 5-phosphate synthase within the plastid non-mevalonate pathway of isoprenoid biosynthesis. Physiol Plant 108:19–24 | es_ES |
dc.description.references | Barja MV et al (2021) Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. New Phytol. https://doi.org/10.1111/nph.17283 | es_ES |
dc.description.references | Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodriguez-Concepcion M, Gruissem W, Vranova E (2013) Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Mol Biol 82:393–416 | es_ES |
dc.description.references | Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154 | es_ES |
dc.description.references | Camagna M, Grundmann A, Bar C, Koschmieder J, Beyer P, Welsch R (2019) Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiol 179:1013–1027 | es_ES |
dc.description.references | Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AH (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 22:454–467 | es_ES |
dc.description.references | Chen Q, Fan D, Wang G (2015) Heteromeric Geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Mol Plant 8:1434–1437 | es_ES |
dc.description.references | Chen Q et al (2019) Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci 62:947–958 | es_ES |
dc.description.references | Coman D, Altenhoff A, Zoller S, Gruissem W, Vranova E (2014) Distinct evolutionary strategies in the GGPPS family from plants. Front Plant Sci 5:230 | es_ES |
dc.description.references | Dogbo O, Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity-chromatography. Biochim Biophys Acta Lipids Lipid Metab 920:140–148 | es_ES |
dc.description.references | Fraser PD, Schuch W, Bramley PM (2000) Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts–partial purification and biochemical properties. Planta 211:361–369 | es_ES |
dc.description.references | Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A (2017) Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci USA 114:E6005–E6014 | es_ES |
dc.description.references | Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948 | es_ES |
dc.description.references | Maudinas B, Bucholtz ML, Papastephanou C, Katiyar SS, Briedis AV, Porter JW (1977) The partial purification and properties of a phytoene synthesizing enzyme system. Arch Biochem Biophys 180:354–362 | es_ES |
dc.description.references | Nagel R et al (2015) Arabidopsis thaliana isoprenyl diphosphate synthases produce the C intermediate, geranylfarnesyl diphosphate. Plant J 84:847–859 | es_ES |
dc.description.references | Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056 | es_ES |
dc.description.references | Okada K et al (2004) The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana. Plant Mol Biol 55:567–577 | es_ES |
dc.description.references | Phillips MA, Leon P, Boronat A, Rodriguez-Concepcion M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623 | es_ES |
dc.description.references | Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967 | es_ES |
dc.description.references | Rodiger A, Agne B, Dobritzsch D, Helm S, Muller F, Potzsch N, Baginsky S (2021) Chromoplast differentiation in bell pepper (Capsicum annuum) fruits. Plant J 105:1431–1442 | es_ES |
dc.description.references | Rodriguez-Concepcion M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25:17–22 | es_ES |
dc.description.references | Rodriguez-Concepcion M et al (2018) A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progr Lipid Res 70:62–93 | es_ES |
dc.description.references | Ruiz-Sola MA, Barja MV, Manzano D, Llorente B, Schipper B, Beekwilder J, Rodriguez-Concepcion M (2016a) A single Arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant Physiol 172:1393–1402 | es_ES |
dc.description.references | Ruiz-Sola MA et al (2016b) Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytol 209:252–264 | es_ES |
dc.description.references | Ruppel NJ, Kropp KN, Davis PA, Martin AE, Luesse DR, Hangarter RP (2013) Mutations in GERANYLGERANYL DIPHOSPHATE SYNTHASE 1 affect chloroplast development in Arabidopsis thaliana (Brassicaceae). Am J Bot 100:2074–2084 | es_ES |
dc.description.references | Schrick K, Mayer U, Martin G, Bellini C, Kuhnt C, Schmidt J, Jurgens G (2002) Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J 31:61–73 | es_ES |
dc.description.references | Shao J et al (2017) (+)-Thalianatriene and (−)-retigeranin B catalyzed by sesterterpene synthases from Arabidopsis thaliana. Org Lett 19:1816–1819 | es_ES |
dc.description.references | Siddique MA, Grossmann J, Gruissem W, Baginsky S (2006) Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. Plant Cell Physiol 47:1663–1673 | es_ES |
dc.description.references | Stauder R, Welsch R, Camagna M, Kohlen W, Balcke GU, Tissier A, Walter MH (2018) Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family front. Plant Sci 9:255 | es_ES |
dc.description.references | Studer RA, Robinson-Rechavi M (2009) How confident can we be that orthologs are similar, but paralogs differ? Trends Genet 25:210–216 | es_ES |
dc.description.references | Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106 | es_ES |
dc.description.references | Vandermoten S, Haubruge É, Cusson M (2009) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695 | es_ES |
dc.description.references | Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA 106:9914–9919 | es_ES |
dc.description.references | Wang C, Chen Q, Fan D, Li J, Wang G, Zhang P (2016) Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae. Mol Plant 9:195–204 | es_ES |
dc.description.references | Wang Q, Huang XQ, Cao TJ, Zhuang Z, Wang R, Lu S (2018) Heteromeric geranylgeranyl diphosphate synthase contributes to carotenoid biosynthesis in ripening fruits of red pepper ( Capsicum annuum var. conoides). J Agric Food Chem 66:11691–11700 | es_ES |
dc.description.references | Wei G et al (2016) Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into voc diversity in cucumber plants (Cucumis sativus). Plant Physiol 172:603–618 | es_ES |
dc.description.references | You MK, Lee YJ, Yu JS, Ha SH (2020) The predicted functional compartmentation of rice terpenoid metabolism by trans-prenyltransferase structural analysis, expression and localization. Intl J Mol Sci 21:8927 | es_ES |
dc.description.references | Zhou F, Pichersky E (2020) The complete functional characterisation of the terpene synthase family in tomato. New Phytol 226:1341–1360 | es_ES |
dc.description.references | Zhou F et al (2017) A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proc Natl Acad Sci USA 114:6866–6871 | es_ES |
dc.description.references | Zhu XF, Suzuki K, Okada K, Tanaka K, Nakagawa T, Kawamukai M, Matsuda K (1997) Cloning and functional expression of a novel geranylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli. Plant Cell Physiol 38:357–361 | es_ES |