- -

Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montaser, Eslam es_ES
dc.contributor.author Diez, José-Luís es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.date.accessioned 2022-06-21T18:04:27Z
dc.date.available 2022-06-21T18:04:27Z
dc.date.issued 2021-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183537
dc.description.abstract [EN] Accurate glucose prediction along a long-enough time horizon is a key component for technology to improve type 1 diabetes treatment. Subjects with diabetes might benefit from supervision and control systems that accurately predict risks and trigger corrective actions early enough with improved mitigation. However, large intra-patient variability poses big challenges to glucose prediction. In previous works by the authors, clustering and local modeling techniques with seasonal stochastic models proved to be efficient, allowing for good glucose prediction accuracy for long prediction horizons. Continuous glucose monitoring (CGM) data were partitioned into fixed-length postprandial time subseries and clustered with Fuzzy C-Means to collect similar behaviors, enforcing seasonality at each cluster after subseries concatenation. Then, seasonal stochastic models were identified for each cluster and local predictions were integrated into a global prediction. However, free-living conditions do not support the fixed-length partition of CGM data since daily events duration is variable. In this work, a new algorithm is provided to overcome this constraint, allowing better coping with patient's variability under variable-length time-stamped daily events in supervision and control applications. Besides predicted glucose, two real-time indices are additionally provided-a crispness index, indicating good representation of current glucose behavior by a single model, and a normality index, allowing for the detection of an abnormal glucose behavior (unusual according to registered historical data). The framework is tested in a proof-of-concept in silico study with ten patients over four month training data and two independent two month validation datasets, with and without abnormal behaviors, from the distribution version of the UVA/Padova simulator extended with diverse sources of intra-patient variability. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia, Industria y Competitividad (MINECO), Grant Number DPI2016-78831-C2-1-R, the Agencia Estatal de Investigacion PID2019107722RB-C21/AEI/10.13039/501100011033, and the European Union (FEDER funds). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Type 1 diabetes es_ES
dc.subject Glucose prediction es_ES
dc.subject Seasonal local models es_ES
dc.subject Fuzzy C-Means es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s21093188 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107722RB-C21/ES/SOLUCIONES A MEDIDA DEL PACIENTE PARA EL CONTROL DE GLUCOSA EN SANGRE EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DPI2016-78831-C2-1-R//SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PÁNCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Montaser, E.; Diez, J.; Bondía Company, J. (2021). Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework. Sensors. 21(9):1-26. https://doi.org/10.3390/s21093188 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s21093188 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 34064325 es_ES
dc.identifier.pmcid PMC8124701 es_ES
dc.relation.pasarela S\461801 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
upv.costeAPC 1950 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem