- -

Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Greengard, Leslie es_ES
dc.contributor.author O Neil, Michael es_ES
dc.contributor.author Rachh, Manas es_ES
dc.contributor.author Vico Bondía, Felipe es_ES
dc.date.accessioned 2022-06-27T18:06:48Z
dc.date.available 2022-06-27T18:06:48Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 0021-9991 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183623
dc.description.abstract [EN] While fast multipole methods (FMMs) are in widespread use for the rapid evaluation of potential fields governed by the Laplace, Helmholtz, Maxwell or Stokes equations, their coupling to high-order quadratures for evaluating layer potentials is still an area of active research. In three dimensions, a number of issues need to be addressed, including the specification of the surface as the union of high-order patches, the incorporation of accurate quadrature rules for integrating singular or weakly singular Green's functions on such patches, and their coupling to the oct-tree data structures on which the FMM separates near and far field interactions. Although the latter is straightforward for point distributions, the near field for a patch is determined by its physical dimensions, not the distribution of discretization points on the surface. Here, we present a general framework for efficiently coupling locally corrected quadratures with FMMs, relying primarily on what are called generalized Gaussian quadratures rules, supplemented by adaptive integration. The approach, however, is quite general and easily applicable to other schemes, such as Quadrature by Expansion (QBX). We also introduce a number of accelerations to reduce the cost of quadrature generation itself, and present several numerical examples of acoustic scattering that demonstrate the accuracy, robustness, and computational efficiency of the scheme. On a single core of an Intel i5 2.3 GHz processor, a Fortran implementation of the scheme can generate near field quadrature corrections for between 1000 and 10,000 points per second, depending on the order of accuracy and the desired precision. A Fortran implementation of the algorithm described in this work is available at https://gitlab.com/fastalgorithms/fmm3dbie. es_ES
dc.description.sponsorship We would like to thank Alex Barnett and Lise-Marie Imbert-Gérard for many useful discussions, and Jim Bremer and Zydrunas Gimbutas for sharing several useful quadrature codes. We also gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Quadro P6000, used for some of the visualizations presented in this research. L. Greengard was supported in part by the Office of Naval Research under award number #N00014-18-1-2307. M. O¿Neil was supported in part by the Office of Naval Research under award numbers #N00014-17-1-2059, #N00014-17-1-2451, and #N00014-18-1-2307. F. Vico was supported in part by the Office of Naval Research under award number #N00014- 18-2307, the Generalitat Valenciana under award number AICO/2019/018, and by the Spanish Ministry of Science and Innovation (Ministerio Ciencia e Innovación) under award number PID2019-107885GB-C32. We would also like to thank the anonymous referees for many helpful comments that led to a much-improved manuscript es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational Physics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Nyström method es_ES
dc.subject Helmholtz equation es_ES
dc.subject Quadrature es_ES
dc.subject Fast multipole method es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcpx.2021.100092 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107885GB-C32/ES/ANTENAS X-WAVE MULTIMODO Y MULTIHAZ RECONFIGURABLES PARA SISTEMAS DE COMUNICACIONES Y SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-18-1-2307/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-17-1-2059/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-17-1-2451/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Greengard, L.; O Neil, M.; Rachh, M.; Vico Bondía, F. (2021). Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures. Journal of Computational Physics. 10:1-23. https://doi.org/10.1016/j.jcpx.2021.100092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jcpx.2021.100092 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.relation.pasarela S\437127 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem