- -

Multi-Queue Request Scheduling for Profit Maximization in IaaS Clouds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-Queue Request Scheduling for Profit Maximization in IaaS Clouds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Shuang es_ES
dc.contributor.author Li, Xiaoping es_ES
dc.contributor.author Sheng, Quan Z. es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.contributor.author Zhang, Jinquan es_ES
dc.contributor.author Beheshti, Amin es_ES
dc.date.accessioned 2022-06-28T18:07:46Z
dc.date.available 2022-06-28T18:07:46Z
dc.date.issued 2021-11-01 es_ES
dc.identifier.issn 1045-9219 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183667
dc.description.abstract [EN] In cloud computing, service providers rent heterogeneous servers from cloud providers, i.e., Infrastructure as a Service (IaaS), to meet requests of consumers. The heterogeneity of servers and impatience of consumers pose great challenges to service providers for profit maximization. In this article, we transform this problem into a multi-queue model where the optimal expected response time of each queue is theoretically analyzed. A multi-queue request scheduling algorithm framework is proposed to maximize the total profit of service providers, which consists of three components: request stream splitting, requests allocation, and server assignment. A request stream splitting algorithm is designed to split the arriving requests to minimize the response time in the multi-queue system. An allocation algorithm, which adopts a one-step improvement strategy, is developed to further optimize the response time of the requests. Furthermore, an algorithm is developed to determine the appropriate number of required servers of each queue. After statistically calibrating parameters and algorithm components over a comprehensive set of random instances, the proposed algorithms are compared with the state-of-the-art over both simulated and real-world instances. The results indicate that the proposed multi-queue request scheduling algorithm outperforms the other algorithms with acceptable computational time. es_ES
dc.description.sponsorship This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1400800, in part by the National Natural Science Foundation of China under Grants 61872077 and 61832004, and in part by the Collaborative InnovationCenter of Wireless Communications Technology. The work of Quan Z. Sheng was supported in part by Australian Research Council Future Fellowship under Grant FT140101247 and in part by Discovery Project under Grant DP180102378. The work of Ruben Ruiz was supported in part by the Spanish Ministry of Science, Innovation, and Universities through the project OPTEP-Port Terminal Operations Optimization under Grant RTI2018-094940-B-I00 financed with FEDER funds es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Parallel and Distributed Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Servers es_ES
dc.subject Time factors es_ES
dc.subject Cloud computing es_ES
dc.subject Task analysis es_ES
dc.subject Queueing analysis es_ES
dc.subject Resource management es_ES
dc.subject Scheduling algorithms es_ES
dc.subject Profit maximization es_ES
dc.subject Consumer impatience es_ES
dc.subject Queue es_ES
dc.subject Scheduling es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Multi-Queue Request Scheduling for Profit Maximization in IaaS Clouds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TPDS.2021.3075254 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61832004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARC/ARC Future Fellowships/FT140101247/AU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61872077/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Discovery Projects/DP180102378/AU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MOST//2017YFB1400800/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Wang, S.; Li, X.; Sheng, QZ.; Ruiz García, R.; Zhang, J.; Beheshti, A. (2021). Multi-Queue Request Scheduling for Profit Maximization in IaaS Clouds. IEEE Transactions on Parallel and Distributed Systems. 32(11):2838-2851. https://doi.org/10.1109/TPDS.2021.3075254 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TPDS.2021.3075254 es_ES
dc.description.upvformatpinicio 2838 es_ES
dc.description.upvformatpfin 2851 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\438332 es_ES
dc.contributor.funder Australian Research Council es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Ministry of Science and Technology, China es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem