- -

Human Mobility Prediction with Region-based Flows and Water Consumption

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Human Mobility Prediction with Region-based Flows and Water Consumption

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Terroso-Sáenz, Fernando es_ES
dc.contributor.author Muñoz, Andrés es_ES
dc.contributor.author Fernández-Pedauyé, Julio es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.date.accessioned 2022-06-29T18:03:23Z
dc.date.available 2022-06-29T18:03:23Z
dc.date.issued 2021 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183700
dc.description.abstract [EN] We are witnessing an increasing need to accurately measure people's mobility as it has become an instrumental factor for the development of innovative services in multiple domains. In this context, several ICT solutions have relied on location-based technologies such as GPS, WiFi or Bluetooth to track individual's movements. However, these technologies are limited by the privacy restrictions of data providers. In this paper we propose a methodology to robustly predict citizens' mobility patterns based on heterogeneous data from different sources. Particularly, our methodology focuses on a human mobility predictor based on a low-resolution mobility dataset and the use of water consumption data as a facilitator of this prediction task. As a result, this work explores whether the water consumption within a geographical region can reveal human activity patterns relevant from the point of view of the mobility mining discipline. This approach has been tested in a residential area near Madrid (Spain) obtaining quite promising results. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministry of Science and Innovation, through the Ramon y Cajal Program under Grant RYC2018-025580-I, Grant RTI2018-096384-B-I00, and Grant RTC-2017-6389-5; in part by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and in part by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020," Spain, under Grant AICO/2020/302. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Human mobility es_ES
dc.subject Water consumption es_ES
dc.subject Location data es_ES
dc.subject Forecasting methods es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Human Mobility Prediction with Region-based Flows and Water Consumption es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2021.3090582 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//20813%2FPI%2F18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6389-5-AR//PLANIFICACIÓN Y GESTIÓN DE RECURSOS HÍDRICOS A PARTIR DE ANÁLISIS DE DATOS DE IOT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F302//FOG-NET: ARQUITECTURA BASADA EN FOG COMPUTING PARA LA OPTIMIZACIÓN DE LA MOMUNICACIONES EN ENTORNOS LOT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Terroso-Sáenz, F.; Muñoz, A.; Fernández-Pedauyé, J.; Cecilia-Canales, JM. (2021). Human Mobility Prediction with Region-based Flows and Water Consumption. IEEE Access. 9:88651-88663. https://doi.org/10.1109/ACCESS.2021.3090582 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2021.3090582 es_ES
dc.description.upvformatpinicio 88651 es_ES
dc.description.upvformatpfin 88663 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\441461 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem