Mostrar el registro sencillo del ítem
dc.contributor.author | Lopez Molina, Carlos | es_ES |
dc.contributor.author | Marco-Detchart, Cedric | es_ES |
dc.contributor.author | Bustince, H. | es_ES |
dc.contributor.author | De Baets, B. | es_ES |
dc.date.accessioned | 2022-06-30T18:08:02Z | |
dc.date.available | 2022-06-30T18:08:02Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 0031-3203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183731 | |
dc.description.abstract | [EN] Most of the strategies for boundary image evaluation involve the comparison of computer-generated images with ground truth solutions. While this can be done in different manners, recent years have seen a dominance of techniques based on the use of confusion matrices. That is, techniques that, at the evaluation stage, interpret boundary detection as a classification problem. These techniques require a correspondence between the boundary pixels in the candidate image and those in the ground truth; that correspondence is further used to create the confusion matrix, from which evaluation statistics can be computed. The correspondence between boundary images faces different challenges, mainly related to the matching of potentially displaced boundaries. Interestingly, boundary image comparison relates to many other fields of study in literature, from object tracking to biometrical identification. In this work, we survey all existing strategies for boundary matching, we propose a taxonomy to embrace them all, and perform a usability-driven quantitative analysis of their behaviour. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support of the Spanish Ministry of Science (PID2019-108392GB-I00, AEI/10.13039/50110 0 011033), ass well as that of the Research Foundation Flanders (FWO project 3G.0838.12.N) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Pattern Recognition | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Boundary image | es_ES |
dc.subject | Boundary evaluation | es_ES |
dc.subject | Linear feature matching | es_ES |
dc.subject | Image comparison | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A survey on matching strategies for boundary image comparison and evaluation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.patcog.2021.107883 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/FUSION DE DATOS CONSIDERANDO LAS DISIMILITUDES Y OTROS TIPOS DE RELACIONES ENTRE LOS MISMOS Y APLICACION A INTELIGENCIA ARTIFICIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FWO//3G.0838.12.N/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Lopez Molina, C.; Marco-Detchart, C.; Bustince, H.; De Baets, B. (2021). A survey on matching strategies for boundary image comparison and evaluation. Pattern Recognition. 115:1-13. https://doi.org/10.1016/j.patcog.2021.107883 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.patcog.2021.107883 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.relation.pasarela | S\455139 | es_ES |
dc.contributor.funder | Research Foundation Flanders | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |