- -

Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Stewart, Alexander Wyn es_ES
dc.contributor.author Bouich, Amal es_ES
dc.contributor.author Marí, B. es_ES
dc.date.accessioned 2022-06-30T18:08:05Z
dc.date.available 2022-06-30T18:08:05Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 0957-4522 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183733
dc.description.abstract [EN] In this work CsPbIBr2 is doped with rubidium, where up to 12% of caesium atoms are replaced with those of rubidium. The obtained Cs1 - xRbxPbIBr2, x= (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12), films were characterized by X-ray diffraction (XRD), the scanning electron microscope (SEM), photoluminescence (PL) and UV¿visible spectroscopy. The integration of Rb? ions into the lattice leads to a detectable change in optoelectronic and morphological structure. Substituting 6% of caesium atoms yields the best results, eliminating pinholes and elevating crystallite size and absorption coefficient by 116 and 125%, respectively. Other novel observations, of particular interest, include a slight increase in band-gap energy from 2.1 eV to 2.14 eV and a decrease in stability. Over a period of 15 days, where temperature and relative humidity kept at 23 °C and 20%,respectively, a larger amount of degradation was seen to take place as rubidiumcontent was increased. Therefore, the doping of CsPbIBr2 with rubidium is most useful in the case where specifically film and crystal quality are desired to be targeted. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economi ' a y Competitividad (Grant Number PID2019107137RB-C21). One of the authors A.W.S. acknowledges the Generalitat Valenciana and the EU for financial support (ACIF/2020/286) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Materials Science Materials in Electronics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Inoganic perovskites es_ES
dc.subject CsPbIBr2 es_ES
dc.subject Rubidium es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10854-021-06941-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107137RB-C21/ES/MEJORANDO LA PRODUCCION DE ENERGIA SOLAR CON PEROVSKITAS INORGANICAS.SINTESIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2020%2F286//AYUDA PREDOCTORAL GVA-STEWART. PROYECTO: PEROVSKITAS HIBRIDAS PARA APLICACIONES FOTOVOLTAICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Stewart, AW.; Bouich, A.; Marí, B. (2021). Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium. Journal of Materials Science Materials in Electronics. 32(20):24825-24833. https://doi.org/10.1007/s10854-021-06941-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10854-021-06941-z es_ES
dc.description.upvformatpinicio 24825 es_ES
dc.description.upvformatpfin 24833 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\445135 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009) es_ES
dc.description.references Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html es_ES
dc.description.references V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften. 14, 477–485 (1926) es_ES
dc.description.references C.J. Bartel et al., New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019) es_ES
dc.description.references A. Bouich, S. Ullah, B. Marí, L. Atourki, M.E. Touhami, One-step synthesis of FA1-xGAxPbI3 perovskites thin film with enhanced stability of alpha (α) phase. Mater. Chem. Phys. 258, 123973 (2021) es_ES
dc.description.references A. Miyata et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015) es_ES
dc.description.references T. Wang et al., Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017) es_ES
dc.description.references V. D’Innocenzo et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4586 es_ES
dc.description.references L.M. Herz, Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017) es_ES
dc.description.references M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole diffusion lengths exceeding trihalide perovskite absorber. Science (80-.). 342, 341–344 (2013) es_ES
dc.description.references A. Bouich, B. Mari, L. Atourki, S. Ullah, M.E. Touhami, Shedding light on the effect of diethyl ether antisolvent on the growth of (CH 3 NH 3) PbI 3 thin films. JOM 73(2), 551–557 (2021) es_ES
dc.description.references H.J. Snaith, Perovskites, The emergence of a new era for low-cost, high-efficiency solar cells. J Phys. Chem. Lett. 4, 3623–3630 (2013) es_ES
dc.description.references K. Bidai, M. Ameri, S. Amel, I. Ameri, Y. Al-Douri, D. Varshney, C.H. Voon, First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNBa3 compound. Chin. J. Phys. 55(5), 2144–2155 (2017) es_ES
dc.description.references A. Ilyas, S.A. Khan, K. Liaqat, T. Usman, Investigation of the structural, electronic, magnetic, and optical properties of CsXO3 (X = Ge, Sn, Pb) perovskites: A first-principles calculations. Optik 244, 167536 (2021) es_ES
dc.description.references R. Arar, T. Ouahrani, D. Varshney, R. Khenata, G. Murtaza, D. Rached, … A.H. Reshak, Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X = Mg, Zn) from first-principle calculations. Mater. Sci. Semicond. Process. 33, 127–135 (2015) es_ES
dc.description.references S. Feng, F. Guo, Y. Zhang, F. Miao, Z. Wang, C. Yuan, K. Yang, Structural evolution, lattice dynamics, electronic and thermal properties of VH2 under high pressure. Solid State Commun. 330, 114287 (2021) es_ES
dc.description.references R. Saraf, A. Mathur, V. Maheshwari, Polymer-controlled growth and wrapping of perovskite single crystals leading to better device stability and performance. ACS Appl. Mater. Interfaces 12(22), 25011–25019 (2020) es_ES
dc.description.references D.B. Straus, S. Guo, A.M. Abeykoon, R.J. Cava, Understanding the Instability of the Halide Perovskite CsPbI3 through Temperature-Dependent Structural Analysis. Adv. Mater. 32, 1–8 (2020) es_ES
dc.description.references S. Mariotti et al., Stability and performance of CsPbI2Br thin films and solar cell devices. ACS Appl. Mater. Interfaces 10, 3750–3760 (2018) es_ES
dc.description.references Q. Ma, S. Huang, X. Wen, M.A. Green, A.W.Y. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 2–6 (2016) es_ES
dc.description.references W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961) es_ES
dc.description.references W. Zhu et al., Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr 2 perovskite solar cells. ChemSusChem. 12, 2318–2325 (2019) es_ES
dc.description.references Y. Guo et al., Inorganic CsPbIBr2-based perovskite solar cells: Fabrication technique modification and efficiency improvement. Sol. RRL 3, 1–13 (2019) es_ES
dc.description.references M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic perovskite tandem solar cells: A review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904102 es_ES
dc.description.references P.V. Oxford retakes tandem cell efficiency record – pv magazine International. https://www.pv-magazine.com/2020/12/21/oxford-pv-retakes-tandem-cell-efficiency-record/ es_ES
dc.description.references B. Zhang et al., High-performance cspbibr2 perovskite solar cells: Effectively promoted crystal growth by antisolvent and organic ion strategies. ACS Appl. Mater. Interfaces 11, 33868–33878 (2019) es_ES
dc.description.references W. Zhang et al., Charge-transporting-layer-free, all-inorganic CsPbIBr 2 perovskite solar cells via dipoles-adjusted interface. Nanomaterials (2020). https://doi.org/10.3390/nano10071324 es_ES
dc.description.references W. Li et al., Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 7, 1–8 (2017) es_ES
dc.description.references C.F.J. Lau et al., CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 1, 573–577 (2016) es_ES
dc.description.references J. Liang et al., Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes. Adv. Energy Mater. 8, 1–7 (2018) es_ES
dc.description.references J.V. Patil, S.S. Mali, C.K. Hong, A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells Exceeding 17 % efficiency. Sol. RRL 4, 1–9 (2020) es_ES
dc.description.references Y. Guo et al., Efficient and hole-transporting-layer-free CsPbI 2 Br planar heterojunction perovskite solar cells through rubidium passivation. ChemSusChem 12, 983–989 (2019) es_ES
dc.description.references G.E. Eperon et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015) es_ES
dc.description.references P. Scherrer, Nachr Ges Wiss Goettingen. Math. Phys. 2, 98–100 (1918) es_ES
dc.description.references A. Bouich, B. Hartiti, S. Ullah, H. Ullah, M.E. Touhami, D.M.F. Santos, B. Mari, Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application. Appl. Phys. A 125(8), 1–9 (2019) es_ES
dc.description.references A. Bouich, S. Ullah, H. Ullah, B. Mari, B. Hartiti, M.E. Touhami, D.M.F. Santos, Deposit on different back contacts: to high-quality CuInGa(S)2 thin films for photovoltaic application. J. Mater. Sci.: Mater. Electron. 30(23), 20832–20839 (2019) es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem