Mostrar el registro sencillo del ítem
dc.contributor.author | Stewart, Alexander Wyn | es_ES |
dc.contributor.author | Bouich, Amal | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.date.accessioned | 2022-06-30T18:08:05Z | |
dc.date.available | 2022-06-30T18:08:05Z | |
dc.date.issued | 2021-10 | es_ES |
dc.identifier.issn | 0957-4522 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183733 | |
dc.description.abstract | [EN] In this work CsPbIBr2 is doped with rubidium, where up to 12% of caesium atoms are replaced with those of rubidium. The obtained Cs1 - xRbxPbIBr2, x= (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12), films were characterized by X-ray diffraction (XRD), the scanning electron microscope (SEM), photoluminescence (PL) and UV¿visible spectroscopy. The integration of Rb? ions into the lattice leads to a detectable change in optoelectronic and morphological structure. Substituting 6% of caesium atoms yields the best results, eliminating pinholes and elevating crystallite size and absorption coefficient by 116 and 125%, respectively. Other novel observations, of particular interest, include a slight increase in band-gap energy from 2.1 eV to 2.14 eV and a decrease in stability. Over a period of 15 days, where temperature and relative humidity kept at 23 °C and 20%,respectively, a larger amount of degradation was seen to take place as rubidiumcontent was increased. Therefore, the doping of CsPbIBr2 with rubidium is most useful in the case where specifically film and crystal quality are desired to be targeted. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Economi ' a y Competitividad (Grant Number PID2019107137RB-C21). One of the authors A.W.S. acknowledges the Generalitat Valenciana and the EU for financial support (ACIF/2020/286) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Materials Science Materials in Electronics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Inoganic perovskites | es_ES |
dc.subject | CsPbIBr2 | es_ES |
dc.subject | Rubidium | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10854-021-06941-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107137RB-C21/ES/MEJORANDO LA PRODUCCION DE ENERGIA SOLAR CON PEROVSKITAS INORGANICAS.SINTESIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2020%2F286//AYUDA PREDOCTORAL GVA-STEWART. PROYECTO: PEROVSKITAS HIBRIDAS PARA APLICACIONES FOTOVOLTAICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.description.bibliographicCitation | Stewart, AW.; Bouich, A.; Marí, B. (2021). Inorganic perovskites improved film and crystal quality of CsPbIBr2 when doped with rubidium. Journal of Materials Science Materials in Electronics. 32(20):24825-24833. https://doi.org/10.1007/s10854-021-06941-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10854-021-06941-z | es_ES |
dc.description.upvformatpinicio | 24825 | es_ES |
dc.description.upvformatpfin | 24833 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 32 | es_ES |
dc.description.issue | 20 | es_ES |
dc.relation.pasarela | S\445135 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009) | es_ES |
dc.description.references | Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html | es_ES |
dc.description.references | V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften. 14, 477–485 (1926) | es_ES |
dc.description.references | C.J. Bartel et al., New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019) | es_ES |
dc.description.references | A. Bouich, S. Ullah, B. Marí, L. Atourki, M.E. Touhami, One-step synthesis of FA1-xGAxPbI3 perovskites thin film with enhanced stability of alpha (α) phase. Mater. Chem. Phys. 258, 123973 (2021) | es_ES |
dc.description.references | A. Miyata et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015) | es_ES |
dc.description.references | T. Wang et al., Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017) | es_ES |
dc.description.references | V. D’Innocenzo et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4586 | es_ES |
dc.description.references | L.M. Herz, Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017) | es_ES |
dc.description.references | M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole diffusion lengths exceeding trihalide perovskite absorber. Science (80-.). 342, 341–344 (2013) | es_ES |
dc.description.references | A. Bouich, B. Mari, L. Atourki, S. Ullah, M.E. Touhami, Shedding light on the effect of diethyl ether antisolvent on the growth of (CH 3 NH 3) PbI 3 thin films. JOM 73(2), 551–557 (2021) | es_ES |
dc.description.references | H.J. Snaith, Perovskites, The emergence of a new era for low-cost, high-efficiency solar cells. J Phys. Chem. Lett. 4, 3623–3630 (2013) | es_ES |
dc.description.references | K. Bidai, M. Ameri, S. Amel, I. Ameri, Y. Al-Douri, D. Varshney, C.H. Voon, First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNBa3 compound. Chin. J. Phys. 55(5), 2144–2155 (2017) | es_ES |
dc.description.references | A. Ilyas, S.A. Khan, K. Liaqat, T. Usman, Investigation of the structural, electronic, magnetic, and optical properties of CsXO3 (X = Ge, Sn, Pb) perovskites: A first-principles calculations. Optik 244, 167536 (2021) | es_ES |
dc.description.references | R. Arar, T. Ouahrani, D. Varshney, R. Khenata, G. Murtaza, D. Rached, … A.H. Reshak, Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X = Mg, Zn) from first-principle calculations. Mater. Sci. Semicond. Process. 33, 127–135 (2015) | es_ES |
dc.description.references | S. Feng, F. Guo, Y. Zhang, F. Miao, Z. Wang, C. Yuan, K. Yang, Structural evolution, lattice dynamics, electronic and thermal properties of VH2 under high pressure. Solid State Commun. 330, 114287 (2021) | es_ES |
dc.description.references | R. Saraf, A. Mathur, V. Maheshwari, Polymer-controlled growth and wrapping of perovskite single crystals leading to better device stability and performance. ACS Appl. Mater. Interfaces 12(22), 25011–25019 (2020) | es_ES |
dc.description.references | D.B. Straus, S. Guo, A.M. Abeykoon, R.J. Cava, Understanding the Instability of the Halide Perovskite CsPbI3 through Temperature-Dependent Structural Analysis. Adv. Mater. 32, 1–8 (2020) | es_ES |
dc.description.references | S. Mariotti et al., Stability and performance of CsPbI2Br thin films and solar cell devices. ACS Appl. Mater. Interfaces 10, 3750–3760 (2018) | es_ES |
dc.description.references | Q. Ma, S. Huang, X. Wen, M.A. Green, A.W.Y. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6, 2–6 (2016) | es_ES |
dc.description.references | W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961) | es_ES |
dc.description.references | W. Zhu et al., Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr 2 perovskite solar cells. ChemSusChem. 12, 2318–2325 (2019) | es_ES |
dc.description.references | Y. Guo et al., Inorganic CsPbIBr2-based perovskite solar cells: Fabrication technique modification and efficiency improvement. Sol. RRL 3, 1–13 (2019) | es_ES |
dc.description.references | M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic perovskite tandem solar cells: A review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201904102 | es_ES |
dc.description.references | P.V. Oxford retakes tandem cell efficiency record – pv magazine International. https://www.pv-magazine.com/2020/12/21/oxford-pv-retakes-tandem-cell-efficiency-record/ | es_ES |
dc.description.references | B. Zhang et al., High-performance cspbibr2 perovskite solar cells: Effectively promoted crystal growth by antisolvent and organic ion strategies. ACS Appl. Mater. Interfaces 11, 33868–33878 (2019) | es_ES |
dc.description.references | W. Zhang et al., Charge-transporting-layer-free, all-inorganic CsPbIBr 2 perovskite solar cells via dipoles-adjusted interface. Nanomaterials (2020). https://doi.org/10.3390/nano10071324 | es_ES |
dc.description.references | W. Li et al., Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 7, 1–8 (2017) | es_ES |
dc.description.references | C.F.J. Lau et al., CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 1, 573–577 (2016) | es_ES |
dc.description.references | J. Liang et al., Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution for High-Stability All-Inorganic Perovskite Solar Cells with Carbon Electrodes. Adv. Energy Mater. 8, 1–7 (2018) | es_ES |
dc.description.references | J.V. Patil, S.S. Mali, C.K. Hong, A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells Exceeding 17 % efficiency. Sol. RRL 4, 1–9 (2020) | es_ES |
dc.description.references | Y. Guo et al., Efficient and hole-transporting-layer-free CsPbI 2 Br planar heterojunction perovskite solar cells through rubidium passivation. ChemSusChem 12, 983–989 (2019) | es_ES |
dc.description.references | G.E. Eperon et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015) | es_ES |
dc.description.references | P. Scherrer, Nachr Ges Wiss Goettingen. Math. Phys. 2, 98–100 (1918) | es_ES |
dc.description.references | A. Bouich, B. Hartiti, S. Ullah, H. Ullah, M.E. Touhami, D.M.F. Santos, B. Mari, Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application. Appl. Phys. A 125(8), 1–9 (2019) | es_ES |
dc.description.references | A. Bouich, S. Ullah, H. Ullah, B. Mari, B. Hartiti, M.E. Touhami, D.M.F. Santos, Deposit on different back contacts: to high-quality CuInGa(S)2 thin films for photovoltaic application. J. Mater. Sci.: Mater. Electron. 30(23), 20832–20839 (2019) | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |