- -

Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuente Herraiz, David es_ES
dc.contributor.author Lazar, Dusan es_ES
dc.contributor.author Oliver Villanueva, José Vicente es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2022-06-30T18:08:08Z
dc.date.available 2022-06-30T18:08:08Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 0166-8595 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183735
dc.description.abstract [EN] In this work, we reconstructed the absorption spectrum of different Synechocystis sp. PCC 6803 optical strains by summing the computed signature of all pigments present in this organism. To do so, modifications to in vitro pigment spectra were first required: namely wavelength shift, curve smoothing, and the package effect calculation derived from high pigment densities were applied. As a result, we outlined a plausible shape for the in vivo absorption spectrum of each chromophore. These are flatter and slightly broader in physiological conditions yet the mean weight-specific absorption coefficient remains identical to the in vitro conditions. Moreover, we give an estimate of all pigment concentrations without applying spectrophotometric correlations, which are often prone to error. The computed cell spectrum reproduces in an accurate manner the experimental spectrum for all the studied wavelengths in the wild-type, Olive, and PAL strain. The gathered pigment concentrations are in agreement with reported values in literature. Moreover, different illumination set-ups were evaluated to calculate the mean absorption cross-section of each chromophore. Finally, a qualitative estimate of light-limited cellular growth at each wavelength is given. This investigation describes a novel way to approach the cell absorption spectrum and shows all its inherent potential for photosynthesis research. es_ES
dc.description.sponsorship DF was supported by an internal grant of Palacky University Olomouc (no. IGA_ PrF_2020_028) and DL by the ERDF project "Plants as a tool for sustainable global development" (no. CZ.02.1.01/0.0/0.0/16-019/0000827)." es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Photosynthesis Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Absorption es_ES
dc.subject Spectrum es_ES
dc.subject Light es_ES
dc.subject Pigment es_ES
dc.subject Modeling es_ES
dc.subject Synechocystis es_ES
dc.subject Photosystem es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11120-020-00799-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Palacký University Olomouc//IGA_ PrF_2020_028/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//CZ.02.1.01%2F0.0%2F0.0%2F16-019%2F0000827/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Fuente Herraiz, D.; Lazar, D.; Oliver Villanueva, JV.; Urchueguía Schölzel, JF. (2021). Reconstruction of the absorption spectrum of Synechocystis sp. PCC 6803 optical mutants from the in vivo signature of individual pigments. Photosynthesis Research. 147(1):75-90. https://doi.org/10.1007/s11120-020-00799-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11120-020-00799-8 es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 90 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 147 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33245462 es_ES
dc.relation.pasarela S\445885 es_ES
dc.contributor.funder Palacký University Olomouc es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Aasen AJ, Liaaen Jensen S (1966) Carotenoids of flexibacteria. IV. The carotenoids of two further pigment types. Acta Chem Scand 20(8):2322–2324 es_ES
dc.description.references Ajlani G, Vernotte C (1998) Construction and characterization of a phycobiliprotein-less mutant of Synechocystis Sp. PCC 6803. Plant Mol Biol 37(3):577–580 es_ES
dc.description.references Bennett A, Bogobad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58(2):419–435 es_ES
dc.description.references Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In-Vivo Absorption Properties of Algal Pigments. In: Ocean Optics X, SPIE, 290. https://spie.org/Publications/Proceedings/Paper/10.1117/12.21451. Accessed 31 March 2020 es_ES
dc.description.references Bricaud A, Stramski D (1990) Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the peru upwelling areaand the Sargasso Sea. Limnol Oceanogr 35(3):562–582 es_ES
dc.description.references Bricaud A, Claustre H, Ras J, Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J Geophys Res 109:C11010 es_ES
dc.description.references Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena Sp. Arch Microbiol 110(1):61–75 es_ES
dc.description.references Buschmann C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens 14(4):711–722 es_ES
dc.description.references Cerullo G et al (2002) Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298(5602):2395–2398 es_ES
dc.description.references Chábera P et al (2011) Excited-state properties of the 16kDa red carotenoid protein from arthrospira maxima. Biochimica et Biophysica Acta - Bioenergetics 1807(1):30–35 es_ES
dc.description.references Collins AM et al (2012) Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. Plant Physiol 158(4):1600–1609 es_ES
dc.description.references de Mooij T et al (2016) Impact of light color on photobioreactor productivity. Algal Res 15:32–42 es_ES
dc.description.references Eng D, Baranoski GVG (2007) The application of photoacoustic absorption spectral data to the modeling of leaf optical properties in the visible range. In: IEEE transactions on geoscience and remote sensing, pp 4077–4086. https://ieeexplore.ieee.org/document/4378552. Accessed 31 March 2020 es_ES
dc.description.references Faccio G et al (2014) Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface. Sci Rep 4:5370 es_ES
dc.description.references Ficek D et al (2004) Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data. Oceanologia 46(4):533–555 es_ES
dc.description.references Fuente D et al (2017) Light distribution and spectral composition within cultures of micro-algae: quantitative modelling of the light field in photobioreactors. Algal Res 23 es_ES
dc.description.references Fujiki T, Taguchi S (2002) Variability in Chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J Plankton Res 24(9):859–874 es_ES
dc.description.references Gobets B, Van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507(1–3):80–99 es_ES
dc.description.references Gobets B et al (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis PCC 6803 and Synechococcus Elongatus. Biophys J 85(6):3883–3898 es_ES
dc.description.references Gong N, Li Z, Sun C, Men Z (2018) External field effect on electronic and vibrational properties of carotenoids. In: Progress in carotenoid research. InTech. https://www.intechopen.com/books/progress-in-carotenoid-research/external-field-effect-on-electronic-and-vibrational-properties-of-carotenoids. Accessed 31 March 2020 es_ES
dc.description.references Green BR, Parson WW (2003) Light-harvesting antennas in photosynthesis. Adv Photosynth Resp 13:513 es_ES
dc.description.references Greg Mitchell B, Kiefer DA (1988) Chlorophyll α specific absorption and fluorescence excitation spectra for light-limited phytoplankton. Deep Sea Res A 35(5):639–663 es_ES
dc.description.references Herbert SK, Han T, Vogelmann TC (2000) New applications of photoacoustics to the study of photosynthesis. Photosynth Res 66(1–2):13–31 es_ES
dc.description.references Hertzberg S, Liaaen-Jensen S, Siegelman HW (1971) The carotenoids of blue-green algae. Phytochemistry 10(12):3121–3127 es_ES
dc.description.references Hiyama T, Nishimura M, Chance B (1969) Determination of carotenes by thin-layer chromatography. Anal Biochem 29(2):339–342 es_ES
dc.description.references Hoepffner N, Sathyendranath S (1991) Effect of pigment composition on absorption properties of phytoplankton. Mar Ecol Prog Ser 73:11–23 es_ES
dc.description.references Jordan P et al (2001) Three-dimensional structure of cyanobaoterial photosystem I at 2.5 Å resolution. Nature 411(6840):909–917 es_ES
dc.description.references Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135(4):2112–2119 es_ES
dc.description.references Kakitani T, Honig B, Crofts AR (1982) Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes. Biophys J 39(1):57–63 es_ES
dc.description.references Kilian O et al (2007) Responses of a thermophilic synechococcus isolate from the microbial mat of octopus spring to light. Appl Environ Microbiol 73(13):4268–4278 es_ES
dc.description.references Kłodawska K et al (2015) Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in cyanobacterium Synechocystis Sp. PCC6803 Cells. Plant Cell Physiol 56(3):558–571 es_ES
dc.description.references Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis Sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154(1):410–422 es_ES
dc.description.references Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144(2):1200–1210 es_ES
dc.description.references Kopečná J, Komenda J, Bučinská L, Sobotka R (2012) Long-term acclimation of the cyanobacterium Synechocystis Sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol 160(4):2239–2250 es_ES
dc.description.references Kwon J-H, Rögner M, Rexroth S (2012) Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system. J Biotechnol 162(1):156–162 es_ES
dc.description.references Kwon JH et al (2013) Reduced light-harvesting antenna: consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Res 2(3):188–195 es_ES
dc.description.references Lagarde D, Vermaas W (1999) The zeaxanthin biosynthesis enzyme β-carotene hydroxylase is involved in myxoxanthophyll synthesis in Synechocystis Sp. PCC 6803. FEBS Lett 454(3):247–251 es_ES
dc.description.references Lauceri R, Bresciani M, Lami A, Morabito G (2018) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol 77(1):169–177 es_ES
dc.description.references Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148(C):350–382 es_ES
dc.description.references Lindblad P et al (2019) CyanoFactory, a European Consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels. Algal Res 41:101510 es_ES
dc.description.references Liu H et al (2019) Phycobilisomes harbor FNRL in cyanobacteria. mBio 10: e00669–19. es_ES
dc.description.references Luimstra VM et al (2018) Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth Res 138(2):177–189 es_ES
dc.description.references Luimstra VM et al (2019) Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynth Res 141(3):291–301 es_ES
dc.description.references Ma W, Ogawa T, Shen Y, Mi H (2007) Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis Sp. Strain PCC 6803. Biochem Biophys Acta 1767(6):742–749 es_ES
dc.description.references MacColl R (2004) Allophycocyanin and energy transfer. Biochem Biophys Acta 1657(2–3):73–81 es_ES
dc.description.references Manodori A, Melis A (1986) Cyanobacterial acclimation to photosystem I or photosystem II light. Plant Physiol 82(1):185–189 es_ES
dc.description.references McGee D et al (2020) Influence of spectral intensity and quality of LED lighting on photoacclimation, carbon allocation and high-value pigments in microalgae. Photosynth Res 143(1):67–80 es_ES
dc.description.references Moal G, Lagoutte B (2012) Photo-induced electron transfer from photosystem i to NADP+: characterization and tentative simulation of the in vivo environment. Biochem Biophys Acta 1817(9):1635–1645 es_ES
dc.description.references Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res Part A 28(11):1375–1393 es_ES
dc.description.references Münzner P, Voigt J (1992) Blue light regulation of cell division in chlamydomonas reinhardtii. Plant Physiol 99(4):1370–1375 es_ES
dc.description.references Orr L, Govindjee (2013) Photosynthesis web resources. Photosynth Res 115(2–3):179–214 es_ES
dc.description.references Porra RJ, Thompson WA, Kriedemann PE (1989) “Determination of Accurate Extinction Coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA 975(3):384–394 es_ES
dc.description.references Rabe AE, Benoit RJ (1962) Mean light intensity—a useful concept in correlating growth rates of dense cultures of microalgae. Biotechnol Bioeng 4(4):377–390 es_ES
dc.description.references Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium spirulina platensis. Biochemistry 40(51):15780–15788 es_ES
dc.description.references Remelli W, Santabarbara S (2018) Excitation and emission wavelength dependence of fluorescence spectra in whole cells of the cyanobacterium Synechocystis Sp. PPC6803: influence on the estimation of photosystem II maximal quantum efficiency. Biochem Biophys Acta 1859(11):1207–1222 es_ES
dc.description.references Rögner M, Nixon PJ, Diner BA (1990) Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium synechocystis PCC 6803. J Biol Chem 265(11):6189–6196 es_ES
dc.description.references Simis SGH, Kauko HM (2012) In vivo mass-specific absorption spectra of phycobilipigments through selective bleaching. Limnol Oceanogr 10(4):214–226 es_ES
dc.description.references Singh AK et al (2009) A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol 151(3):1596–1608 es_ES
dc.description.references Stirbet A, Lazár D, Papageorgiou GC, Govindjee (2019) Chlorophyll a fluorescence in cyanobacteria: relation to photosynthesis. In: Cyanobacteria. Elsevier, pp 79–130 es_ES
dc.description.references Stramski D, Morel A (1990) Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance. Deep Sea Res A 37(2):245–266 es_ES
dc.description.references Takaichi S, Maoka T, Masamoto K (2001) Myxoxanthophyll in Synechocystis Sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-Di-O-methyl-α-l-fucoside), not rhamnoside. Plant Cell Physiol 42(7):756–762 es_ES
dc.description.references Thrane J-E et al (2015) Spectrophotometric analysis of pigments: a critical assessment of a high-throughput method for analysis of algal pigment mixtures by spectral deconvolution, ed. Schmitt FG. PLOS ONE 10(9): e0137645 es_ES
dc.description.references Tian L et al (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133(45):18304–18311 es_ES
dc.description.references Touloupakis E, Cicchi B, Torzillo G (2015) A bioenergetic assessment of photosynthetic growth of Synechocystis Sp. PCC 6803 in continuous cultures. Biotechnol Biofuels 8(1):133 es_ES
dc.description.references Tsunoyama Y et al (2009) Multiple rieske proteins enable short- and long-term light adaptation of Synechocystis Sp. PCC 6803. J Biol Chem 284(41):27875–27883 es_ES
dc.description.references Tyystjärvi T et al (2002) Action spectrum of PsbA gene transcription is similar to that of photoinhibition in Synechocystis Sp. PCC 6803. FEBS Lett 516(1–3):167–171 es_ES
dc.description.references Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473(7345):55–60 es_ES
dc.description.references Vajravel S et al (2016) β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis Sp. PCC 6803. Photosynth Res 130(1–3):403–415 es_ES
dc.description.references van Amerongen H, van Grondelle R, Valkunas L (2000) Photosynthetic excitons. World Scientific. https://www.worldscientific.com/worldscibooks/10.1142/3609. Accessed 28 March 2020 es_ES
dc.description.references von Wobeser EA et al (2011) Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth. Plant Physiol 155(3):1445–1457 es_ES
dc.description.references Warren CK, Weedon BCL (1958) 804. Carotenoids and related compounds. Part VII. Synthesis of canthaxanthin and echinenone. J Chem Soc (Resumed) 3986–393. es_ES
dc.description.references Westermark S, Steuer R (2016) Toward multiscale models of cyanobacterial growth: a modular approach. Front Bioeng Biotechnol 4(DEC) es_ES
dc.description.references Woźniak B et al (2003) Modelling light and photosynthesis in the marine environment. Oceanologia 45(2):171–245 es_ES
dc.description.references Wright SW, Jeffrey SW, Mantoura RFC (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris es_ES
dc.description.references Yacobi YZ, Köhler J, Leunert F, Gitelson A (2015) Phycocyanin-specific absorption coefficient: eliminating the effect of chlorophylls absorption. Limnol Oceanogr 13(4):e10015 es_ES
dc.description.references Zakar T et al (2017) Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis Sp PCC6803. Biochem Biophys Acta 1858(5):337–350 es_ES
dc.description.references Zavřel T et al (2015) Characterization of a model cyanobacterium Synechocystis Sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor. Eng Life Sci 15(1):122–132 es_ES
dc.description.references Zavřel T, Očenášová P, Červený J (2017) Phenotypic characterization of Synechocystis Sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress, ed. Jacobs JM. PLOS ONE 12(12): e0189130 es_ES
dc.description.references Zhang Y et al (2017) An extended PROSPECT: advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and B. Sci Rep 7:6429 es_ES
dc.description.references Zhao W, Xie J, Xiuling Xu, Zhao J (2015) State transitions and fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 in response to changes in light quality and intensity. J Photochem Photobiol B 142:169–177 es_ES
dc.description.references Zlenko DV et al (2019) Role of the PB-LOOP in ApcE and phycobilisome core function in cyanobacterium Synechocystis Sp PCC 6803. Biochim Biophys Acta 1860(2):155–166 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem