- -

Embeddings of Lipschitz-free spaces into l(1)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Embeddings of Lipschitz-free spaces into l(1)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aliaga, Ramón J. es_ES
dc.contributor.author Petitjean, Colin es_ES
dc.contributor.author Prochazka, Antonin es_ES
dc.date.accessioned 2022-07-05T18:05:35Z
dc.date.available 2022-07-05T18:05:35Z
dc.date.issued 2021-03-15 es_ES
dc.identifier.issn 0022-1236 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183841
dc.description.abstract [EN] We show that, for a separable and complete metric space $M$, the Lipschitz-free space $\mathcal{F}(M)$ embeds linearly and almost-isometrically into $\ell_1$ if and only if $M$ is a subset of an $\mathbb{R}$-tree with length measure 0. Moreover, it embeds isometrically if and only if the length measure of the closure of the set of branching points of $M$ (taken in any minimal $\mathbb{R}$-tree that contains $M$) is also 0. We also prove that, for subspaces of $L_1$ spaces, every extreme point of the unit ball is preserved; as a consequence we obtain a complete characterization of extreme points of the unit ball of $\mathcal{F}(M)$ when $M$ is a subset of an $\mathbb{R}$-tree. es_ES
dc.description.sponsorship This work was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03, funding agency: Secretariat general pour l'investissement). R. J. Aliaga was also partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant MTM2017-83262-C2-2-P. The authors would like to thank Abraham Rueda Zoca for his valuable suggestions. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Functional Analysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Extreme point es_ES
dc.subject Lipschitz-free space es_ES
dc.subject Lipschitz homeomorphism es_ES
dc.subject R-tree es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Embeddings of Lipschitz-free spaces into l(1) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfa.2020.108916 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-2-P/ES/LA INTERACCION ENTRE GEOMETRIA Y TOPOLOGIA EN ESPACIOS DE BANACH. APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-15-IDEX-03/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Aliaga, RJ.; Petitjean, C.; Prochazka, A. (2021). Embeddings of Lipschitz-free spaces into l(1). Journal of Functional Analysis. 280(6):1-26. https://doi.org/10.1016/j.jfa.2020.108916 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfa.2020.108916 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 280 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\425487 es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem