Mostrar el registro sencillo del ítem
dc.contributor.author | Aliaga, Ramón J. | es_ES |
dc.contributor.author | Petitjean, Colin | es_ES |
dc.contributor.author | Prochazka, Antonin | es_ES |
dc.date.accessioned | 2022-07-05T18:05:35Z | |
dc.date.available | 2022-07-05T18:05:35Z | |
dc.date.issued | 2021-03-15 | es_ES |
dc.identifier.issn | 0022-1236 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/183841 | |
dc.description.abstract | [EN] We show that, for a separable and complete metric space $M$, the Lipschitz-free space $\mathcal{F}(M)$ embeds linearly and almost-isometrically into $\ell_1$ if and only if $M$ is a subset of an $\mathbb{R}$-tree with length measure 0. Moreover, it embeds isometrically if and only if the length measure of the closure of the set of branching points of $M$ (taken in any minimal $\mathbb{R}$-tree that contains $M$) is also 0. We also prove that, for subspaces of $L_1$ spaces, every extreme point of the unit ball is preserved; as a consequence we obtain a complete characterization of extreme points of the unit ball of $\mathcal{F}(M)$ when $M$ is a subset of an $\mathbb{R}$-tree. | es_ES |
dc.description.sponsorship | This work was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03, funding agency: Secretariat general pour l'investissement). R. J. Aliaga was also partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant MTM2017-83262-C2-2-P. The authors would like to thank Abraham Rueda Zoca for his valuable suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Functional Analysis | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Extreme point | es_ES |
dc.subject | Lipschitz-free space | es_ES |
dc.subject | Lipschitz homeomorphism | es_ES |
dc.subject | R-tree | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Embeddings of Lipschitz-free spaces into l(1) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfa.2020.108916 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-2-P/ES/LA INTERACCION ENTRE GEOMETRIA Y TOPOLOGIA EN ESPACIOS DE BANACH. APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-15-IDEX-03/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Aliaga, RJ.; Petitjean, C.; Prochazka, A. (2021). Embeddings of Lipschitz-free spaces into l(1). Journal of Functional Analysis. 280(6):1-26. https://doi.org/10.1016/j.jfa.2020.108916 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jfa.2020.108916 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 26 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 280 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\425487 | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |