- -

Pharmaceutical characterization and pharmacokinetics of florfenicol-loaded alginate dried beads in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pharmaceutical characterization and pharmacokinetics of florfenicol-loaded alginate dried beads in rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutierrez Olvera, Lilia es_ES
dc.contributor.author Marcos Benitez, Xelhua es_ES
dc.contributor.author García-Guzmán, Perla es_ES
dc.contributor.author Monroy-Barreto, Minerva es_ES
dc.contributor.author Sumano, Héctor es_ES
dc.date.accessioned 2022-07-07T12:12:15Z
dc.date.available 2022-07-07T12:12:15Z
dc.date.issued 2022-06-29
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/183941
dc.description.abstract [EN] The pharmacokinetic variables of a new formulation of florfenicol included in dried bean of alginate (FADBs), its acceptance as in food medication, and its relationship with theoretical minimum inhibitory concentration (MIC) values of the main pathogens in rabbits, are presented. FADBs sought to mask the unpleasant taste of florfenicol while enhancing sustained absorption in a day to facilitate and optimise its dosage in this species. The entrapment efficiency was determined to be 94-98% and 73.56±3.26% of drug loading. No reduction in food consumption was detected, nor selectivity when choosing from their usual food. The elimination half-life was 1.23 to 2.4 h slower than the one previously reported in the literature. Possible flip-flop pharmacokinetics is proposed for FADBs in rabbits, thus complying better with the key pharmacokinetics/pharmacodynamics (PK/PD) ratio of t?MIC. Also, if a MIC2.0 µg/mL is taken as the cut-off point for florfenicol in rabbits, then ad libitum intake of FADBs in their standard diet is sufficient to maintain plasma concentrations of florfenicol above this level during the whole dosing interval of 24 h. Additionally, FADBs are a low-cost and attractive drug delivery system for the oral controlled release of florfenicol in rabbits. es_ES
dc.description.sponsorship Posdoctoral and PAPIIT grant programs of the Universidad Nacional Autónoma de México es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Florfenicol es_ES
dc.subject Alginate es_ES
dc.subject Dried-beads es_ES
dc.subject Rabbits es_ES
dc.subject Pharmacokinetics es_ES
dc.title Pharmaceutical characterization and pharmacokinetics of florfenicol-loaded alginate dried beads in rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2022.16381
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gutierrez Olvera, L.; Marcos Benitez, X.; García-Guzmán, P.; Monroy-Barreto, M.; Sumano, H. (2022). Pharmaceutical characterization and pharmacokinetics of florfenicol-loaded alginate dried beads in rabbits. World Rabbit Science. 30(2):153-162. https://doi.org/10.4995/wrs.2022.16381 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2022.16381 es_ES
dc.description.upvformatpinicio 153 es_ES
dc.description.upvformatpfin 162 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\16381 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.description.references Abd El-Aty A.M., Goudah A., Abo El-Sooud K., El-Zorba H.Y., Shimoda M., Zhou H.H. 2004. Pharmacokinetic and bioavailability of florfenicol following intravenous, intramuscular and oral administration in rabbits. Vet. Res. Commun., 28: 515-524. https://doi.org/10.1023/b:verc.0000040241.06642.49 es_ES
dc.description.references Adams P.E., Varma K.J., Powers T.E., Lamendola, J.F. 1987. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses. Am. J. Vet. Res., 48: 1725-1732. es_ES
dc.description.references Arriagada F., Gunther G., Zabala I., Rubio-Retama J., Morales J. 2019. Development and Characterization of Florfenicol-Loaded BSA Nanoparticles as Controlled Release Carrier. AAPS Pharm. Sci. Tech., 20: 202. https://doi.org/10.1208/s12249-019-1419 es_ES
dc.description.references Bretzlaff K.N., Neff-Davis C.A., Ott R.S., Koritz G.D., Gustafsson B.K., Davis L.E. 1987. Florfenicol in non-lactating dairy cows: pharmacokinetics, binding to plasma proteins, and effects on phagocytosis by blood neutrophils. J. Vet. Pharmacol. Ther., 10: 233-240. https://doi.org/10.1111/j.1365-2885.1987.tb00534.x es_ES
dc.description.references Brewer N.R. 2006. Biology of the rabbit. J. Am. Assoc. Lab. Anim. Sci., 45: 8-24. es_ES
dc.description.references De Craene B.A., Deprez P., D´Haese E., Nelis H.J., Van den Bossche W., De Leenheer P. 1997. Pharmacokinetics of Florfenicol in Cerebrospinal Fluid and Plasma of Calves. Antimicrob. Agents Chemother., 41: 1991-1995. https://doi.org/10.1128/AAC.41.9.1991 es_ES
dc.description.references Elimam M.M, Shantier S.W., Gadkariem E.A., Mohamed M.A. 2016. Development of spectrophotometric methods for the analysis of florfenicol in bulk and dosage forms. Int. J. Pharmacy Pharm. Sci., 8: 347-349. es_ES
dc.description.references Espinosa J., Ferreras M.C., Benavides J., Cuesta N., Pérez C., García M.J., García J.F., Pérez V. 2020. Causes of Mortality and Disease in Rabbits and Hares: A Retrospective Study. Animals (Basel), 10: 158. https://doi.org/10.3390/ani10010158 es_ES
dc.description.references Gutierrez L., Lechuga T., Marcos X., García-Guzmán P., Gutierrez C., Sumano H. 2020. Comparative bioavailability of enrofloxacin in dogs when concealed in noncommercial morsels, either as a tablet or as enrofloxacin–alginate dried beads. J. Vet. Pharmacol. Ther., 44: 522-532. https://doi.org/10.1111/jvp.12925 es_ES
dc.description.references Hariyadi D.M., Islam N. 2020. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci., 2020: 1-16. https://doi.org/10.1155/2020/8886095 es_ES
dc.description.references Jitendra C.S., Ashwini D. 2014. Kinetic modeling and comparison of in vitro dissolution profiles. World J. Pharm. Sci., 2: 302–309. es_ES
dc.description.references Karp F., Turino L.N., Estenoz D., Castro G.R., Islan G.A. 2019. Encapsulation of florfenicol by in situ crystallization into novel alginate-Eudragit RS® blended matrix for pH modulated release. J. Drug. Deliv. Sci. Technol., 54: 1-9. https://doi.org/10.1016/j.jddst.2019.101241 es_ES
dc.description.references Koc K., Ozturk M., Kadioglu Y., Dogan E., Yanmaz L.E., Okumus Z. 2009. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits. Res. Vet. Sci., 87: 102-105. https://doi.org/10.1016/j.rvsc.2008.10.010 es_ES
dc.description.references Kowalski P., Konieczna L., Chmielewska A., Oledzka I., Plenis A., Bieniecki M., Lamparczyk H. 2005. Comparative evaluation between capillary electrophoresis and highperformance liquid chromatography for the analysis of florfenicol in plasma. J. Pharm. Biomed. Anal., 39: 983-989. https://doi.org/10.1016/j.jpba.2005.05.032 es_ES
dc.description.references Lennox A. 2012. Respiratory disease and pasteurellosis. In: K.E. Quesenberry and J.W. Carpenter (Eds.) Ferrets, Rabbits and Rodents: Clinical Medicine and Surgery. 3rd Edition. Elsevier, USA, 205-216. https://doi.org/10.1016/B978-1-4160-6621-7.00016-6 es_ES
dc.description.references Li X., Xie S., Pan Y., Qu W., Tao Y., Chen D., Huang L., Liu Z., Wang Y., Yuan Z. 2016. Preparation, characterization and pharmacokinetics of doxycycline hydrochloride and florfenicol polyvinylpyrroliddone microparticle entrapped with hydroxypropyl-β-cyclodextrin inclusion complexes suspension. Colloids Surf. B Biointerfaces, 141: 634-642. https://doi.org/10.1016/j.colsurfb.2016.02.027 es_ES
dc.description.references Lupo B., Maestro A., Gutiérrez J.M., González C. 2015. Characterization of alginate beads with encapsulated cocoa extract toprepare functional food: Comparison of two gelation mechanisms. Food Hydrocoll., 49: 25-34. https://doi.org/10.1016/j.foodhyd.2015.02.023 es_ES
dc.description.references Marciniec B., Stawny M., Hofman-Bieniek M., Naskrent M. 2008. Thermal and spectroscopic analysis of florfenicol irradiated in the solid-state. J. Therm. Anal. Calorim., 93: 733-737. https://doi.org/10.1007/s10973-008-9137-5 es_ES
dc.description.references Martínez M.N., Toutain P.L., Turnidge J. 2013. The pharmacodynamics of antimicrobial agents. In: S. Giguère, J.F. Prescott and P.M. Dowling (Eds.) Antimicrobial Therapy in Veterinary Medicine. 5th Edition. Wiley Blackwell, USA, 79-103. es_ES
dc.description.references https://doi.org/10.1002/9781118675014.ch5 es_ES
dc.description.references McBridge E.A., Magnus E., Hearne G. 2004. Behaviour problems in the domestic rabbit. In: D. Appleby (Ed.) The APBC book of companion animal behaviour. Souvenir Press, London, 167. es_ES
dc.description.references Park B.K., Lim J.H., Kim M.S., Hwang Y.H., Yun H.I. 2007. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. J. Vet. Pharmacol. Ther., 30: 32-36. https://doi.org/10.1111/j.1365-2885.2007.00809.x es_ES
dc.description.references Sailer-Fleeger D. Appropriate Use of Antibiotics in Rabbits. House Rabbit Society. https://rabbit.org/health/antibiotics.html. Accessed April 2021. es_ES
dc.description.references Sarmento B., Ferreira D., Veiga F., Ribeiro A. 2006. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 66: 1-7. https://doi.org/10.1016/j.carbpol.2006.02.008 es_ES
dc.description.references Sun Z., Hao H., Xie C., Xu Z., Yin Q., Bao Y., Hou B., Wang Y. 2014. Thermodynamic Properties of Form A and Form B of Florfenicol. Ind. Eng. Chem. Res., 53: 13506-13512. https://doi.org/10.1021/ie5020525 es_ES
dc.description.references The United States Pharmacopeial Convention. 2007. Florfenicol (Veterinary—Systemic). Available at: https://cdn.ymaws.com/www.aavpt.org/resource/resmgr/imported/florfenicol.pdf. Accessed August 2021. es_ES
dc.description.references Tønnesen H.H., Karlsen J. 2002. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 28: 621-630. es_ES
dc.description.references https://doi.org/10.1081/DDC-120003853 es_ES
dc.description.references Toutain P.L., Sidu P.K., Lees P., Rassouli A., Pelligand L. 2019. VetCAST Method for Determination of the Pharmacokinetic-Pharmacodynamic Cut-Off Values of a Long-Acting Formulation of Florfenicol to Support Clinical Breakpoints for Florfenicol Antimicrobial Susceptibility Testing in Cattle. Front. Microbiol., 10: 1310. https://doi.org/10.3389/fmicb.2019.01310 es_ES
dc.description.references Ueda Y., Suenaga I. 1995. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumoniae. J. Vet. Med. Sci., 57: 363-364. https://doi.org/0.1292/jvms.57.363 es_ES
dc.description.references Wang S., Chen N., Qu Y. 2011. Solubility of florfenicol in different solvents at temperatures from (278 to 318) K. J. Chem. Eng. Data, 56: 638-641. https://doi.org/10.1021/je1008284 es_ES
dc.description.references Zhang W., Liu C., Chen S., Liu M., Zhang L., Lin S., Shu G., Yuan Z., Lin J., Peng G., Zhong Z., Yin L., Zhao L., Fu H. 2020. 2020. Poloxamer modified florfenicol instant microparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces, 193: 1-8. https://doi.org/10.1016/j.colsurfb.2020.111078 es_ES
dc.description.references Youssef F.S., El-Banna H.A., Elzorba H.Y., Galal A.M. 2019. Application of some nanoparticles in the field of veterinary medicine. Int. J. Vet. Sci. Med., 7: 78-93. https://doi.org/10.1080/23144599.2019.1691379 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem