Mostrar el registro sencillo del ítem
dc.contributor.author | Gutierrez Olvera, Lilia | es_ES |
dc.contributor.author | Marcos Benitez, Xelhua | es_ES |
dc.contributor.author | García-Guzmán, Perla | es_ES |
dc.contributor.author | Monroy-Barreto, Minerva | es_ES |
dc.contributor.author | Sumano, Héctor | es_ES |
dc.date.accessioned | 2022-07-07T12:12:15Z | |
dc.date.available | 2022-07-07T12:12:15Z | |
dc.date.issued | 2022-06-29 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/183941 | |
dc.description.abstract | [EN] The pharmacokinetic variables of a new formulation of florfenicol included in dried bean of alginate (FADBs), its acceptance as in food medication, and its relationship with theoretical minimum inhibitory concentration (MIC) values of the main pathogens in rabbits, are presented. FADBs sought to mask the unpleasant taste of florfenicol while enhancing sustained absorption in a day to facilitate and optimise its dosage in this species. The entrapment efficiency was determined to be 94-98% and 73.56±3.26% of drug loading. No reduction in food consumption was detected, nor selectivity when choosing from their usual food. The elimination half-life was 1.23 to 2.4 h slower than the one previously reported in the literature. Possible flip-flop pharmacokinetics is proposed for FADBs in rabbits, thus complying better with the key pharmacokinetics/pharmacodynamics (PK/PD) ratio of t?MIC. Also, if a MIC2.0 µg/mL is taken as the cut-off point for florfenicol in rabbits, then ad libitum intake of FADBs in their standard diet is sufficient to maintain plasma concentrations of florfenicol above this level during the whole dosing interval of 24 h. Additionally, FADBs are a low-cost and attractive drug delivery system for the oral controlled release of florfenicol in rabbits. | es_ES |
dc.description.sponsorship | Posdoctoral and PAPIIT grant programs of the Universidad Nacional Autónoma de México | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | World Rabbit Science | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Florfenicol | es_ES |
dc.subject | Alginate | es_ES |
dc.subject | Dried-beads | es_ES |
dc.subject | Rabbits | es_ES |
dc.subject | Pharmacokinetics | es_ES |
dc.title | Pharmaceutical characterization and pharmacokinetics of florfenicol-loaded alginate dried beads in rabbits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/wrs.2022.16381 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gutierrez Olvera, L.; Marcos Benitez, X.; García-Guzmán, P.; Monroy-Barreto, M.; Sumano, H. (2022). Pharmaceutical characterization and pharmacokinetics of florfenicol-loaded alginate dried beads in rabbits. World Rabbit Science. 30(2):153-162. https://doi.org/10.4995/wrs.2022.16381 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2022.16381 | es_ES |
dc.description.upvformatpinicio | 153 | es_ES |
dc.description.upvformatpfin | 162 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-8886 | |
dc.relation.pasarela | OJS\16381 | es_ES |
dc.contributor.funder | Universidad Nacional Autónoma de México | es_ES |
dc.description.references | Abd El-Aty A.M., Goudah A., Abo El-Sooud K., El-Zorba H.Y., Shimoda M., Zhou H.H. 2004. Pharmacokinetic and bioavailability of florfenicol following intravenous, intramuscular and oral administration in rabbits. Vet. Res. Commun., 28: 515-524. https://doi.org/10.1023/b:verc.0000040241.06642.49 | es_ES |
dc.description.references | Adams P.E., Varma K.J., Powers T.E., Lamendola, J.F. 1987. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses. Am. J. Vet. Res., 48: 1725-1732. | es_ES |
dc.description.references | Arriagada F., Gunther G., Zabala I., Rubio-Retama J., Morales J. 2019. Development and Characterization of Florfenicol-Loaded BSA Nanoparticles as Controlled Release Carrier. AAPS Pharm. Sci. Tech., 20: 202. https://doi.org/10.1208/s12249-019-1419 | es_ES |
dc.description.references | Bretzlaff K.N., Neff-Davis C.A., Ott R.S., Koritz G.D., Gustafsson B.K., Davis L.E. 1987. Florfenicol in non-lactating dairy cows: pharmacokinetics, binding to plasma proteins, and effects on phagocytosis by blood neutrophils. J. Vet. Pharmacol. Ther., 10: 233-240. https://doi.org/10.1111/j.1365-2885.1987.tb00534.x | es_ES |
dc.description.references | Brewer N.R. 2006. Biology of the rabbit. J. Am. Assoc. Lab. Anim. Sci., 45: 8-24. | es_ES |
dc.description.references | De Craene B.A., Deprez P., D´Haese E., Nelis H.J., Van den Bossche W., De Leenheer P. 1997. Pharmacokinetics of Florfenicol in Cerebrospinal Fluid and Plasma of Calves. Antimicrob. Agents Chemother., 41: 1991-1995. https://doi.org/10.1128/AAC.41.9.1991 | es_ES |
dc.description.references | Elimam M.M, Shantier S.W., Gadkariem E.A., Mohamed M.A. 2016. Development of spectrophotometric methods for the analysis of florfenicol in bulk and dosage forms. Int. J. Pharmacy Pharm. Sci., 8: 347-349. | es_ES |
dc.description.references | Espinosa J., Ferreras M.C., Benavides J., Cuesta N., Pérez C., García M.J., García J.F., Pérez V. 2020. Causes of Mortality and Disease in Rabbits and Hares: A Retrospective Study. Animals (Basel), 10: 158. https://doi.org/10.3390/ani10010158 | es_ES |
dc.description.references | Gutierrez L., Lechuga T., Marcos X., García-Guzmán P., Gutierrez C., Sumano H. 2020. Comparative bioavailability of enrofloxacin in dogs when concealed in noncommercial morsels, either as a tablet or as enrofloxacin–alginate dried beads. J. Vet. Pharmacol. Ther., 44: 522-532. https://doi.org/10.1111/jvp.12925 | es_ES |
dc.description.references | Hariyadi D.M., Islam N. 2020. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci., 2020: 1-16. https://doi.org/10.1155/2020/8886095 | es_ES |
dc.description.references | Jitendra C.S., Ashwini D. 2014. Kinetic modeling and comparison of in vitro dissolution profiles. World J. Pharm. Sci., 2: 302–309. | es_ES |
dc.description.references | Karp F., Turino L.N., Estenoz D., Castro G.R., Islan G.A. 2019. Encapsulation of florfenicol by in situ crystallization into novel alginate-Eudragit RS® blended matrix for pH modulated release. J. Drug. Deliv. Sci. Technol., 54: 1-9. https://doi.org/10.1016/j.jddst.2019.101241 | es_ES |
dc.description.references | Koc K., Ozturk M., Kadioglu Y., Dogan E., Yanmaz L.E., Okumus Z. 2009. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits. Res. Vet. Sci., 87: 102-105. https://doi.org/10.1016/j.rvsc.2008.10.010 | es_ES |
dc.description.references | Kowalski P., Konieczna L., Chmielewska A., Oledzka I., Plenis A., Bieniecki M., Lamparczyk H. 2005. Comparative evaluation between capillary electrophoresis and highperformance liquid chromatography for the analysis of florfenicol in plasma. J. Pharm. Biomed. Anal., 39: 983-989. https://doi.org/10.1016/j.jpba.2005.05.032 | es_ES |
dc.description.references | Lennox A. 2012. Respiratory disease and pasteurellosis. In: K.E. Quesenberry and J.W. Carpenter (Eds.) Ferrets, Rabbits and Rodents: Clinical Medicine and Surgery. 3rd Edition. Elsevier, USA, 205-216. https://doi.org/10.1016/B978-1-4160-6621-7.00016-6 | es_ES |
dc.description.references | Li X., Xie S., Pan Y., Qu W., Tao Y., Chen D., Huang L., Liu Z., Wang Y., Yuan Z. 2016. Preparation, characterization and pharmacokinetics of doxycycline hydrochloride and florfenicol polyvinylpyrroliddone microparticle entrapped with hydroxypropyl-β-cyclodextrin inclusion complexes suspension. Colloids Surf. B Biointerfaces, 141: 634-642. https://doi.org/10.1016/j.colsurfb.2016.02.027 | es_ES |
dc.description.references | Lupo B., Maestro A., Gutiérrez J.M., González C. 2015. Characterization of alginate beads with encapsulated cocoa extract toprepare functional food: Comparison of two gelation mechanisms. Food Hydrocoll., 49: 25-34. https://doi.org/10.1016/j.foodhyd.2015.02.023 | es_ES |
dc.description.references | Marciniec B., Stawny M., Hofman-Bieniek M., Naskrent M. 2008. Thermal and spectroscopic analysis of florfenicol irradiated in the solid-state. J. Therm. Anal. Calorim., 93: 733-737. https://doi.org/10.1007/s10973-008-9137-5 | es_ES |
dc.description.references | Martínez M.N., Toutain P.L., Turnidge J. 2013. The pharmacodynamics of antimicrobial agents. In: S. Giguère, J.F. Prescott and P.M. Dowling (Eds.) Antimicrobial Therapy in Veterinary Medicine. 5th Edition. Wiley Blackwell, USA, 79-103. | es_ES |
dc.description.references | https://doi.org/10.1002/9781118675014.ch5 | es_ES |
dc.description.references | McBridge E.A., Magnus E., Hearne G. 2004. Behaviour problems in the domestic rabbit. In: D. Appleby (Ed.) The APBC book of companion animal behaviour. Souvenir Press, London, 167. | es_ES |
dc.description.references | Park B.K., Lim J.H., Kim M.S., Hwang Y.H., Yun H.I. 2007. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. J. Vet. Pharmacol. Ther., 30: 32-36. https://doi.org/10.1111/j.1365-2885.2007.00809.x | es_ES |
dc.description.references | Sailer-Fleeger D. Appropriate Use of Antibiotics in Rabbits. House Rabbit Society. https://rabbit.org/health/antibiotics.html. Accessed April 2021. | es_ES |
dc.description.references | Sarmento B., Ferreira D., Veiga F., Ribeiro A. 2006. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 66: 1-7. https://doi.org/10.1016/j.carbpol.2006.02.008 | es_ES |
dc.description.references | Sun Z., Hao H., Xie C., Xu Z., Yin Q., Bao Y., Hou B., Wang Y. 2014. Thermodynamic Properties of Form A and Form B of Florfenicol. Ind. Eng. Chem. Res., 53: 13506-13512. https://doi.org/10.1021/ie5020525 | es_ES |
dc.description.references | The United States Pharmacopeial Convention. 2007. Florfenicol (Veterinary—Systemic). Available at: https://cdn.ymaws.com/www.aavpt.org/resource/resmgr/imported/florfenicol.pdf. Accessed August 2021. | es_ES |
dc.description.references | Tønnesen H.H., Karlsen J. 2002. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 28: 621-630. | es_ES |
dc.description.references | https://doi.org/10.1081/DDC-120003853 | es_ES |
dc.description.references | Toutain P.L., Sidu P.K., Lees P., Rassouli A., Pelligand L. 2019. VetCAST Method for Determination of the Pharmacokinetic-Pharmacodynamic Cut-Off Values of a Long-Acting Formulation of Florfenicol to Support Clinical Breakpoints for Florfenicol Antimicrobial Susceptibility Testing in Cattle. Front. Microbiol., 10: 1310. https://doi.org/10.3389/fmicb.2019.01310 | es_ES |
dc.description.references | Ueda Y., Suenaga I. 1995. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumoniae. J. Vet. Med. Sci., 57: 363-364. https://doi.org/0.1292/jvms.57.363 | es_ES |
dc.description.references | Wang S., Chen N., Qu Y. 2011. Solubility of florfenicol in different solvents at temperatures from (278 to 318) K. J. Chem. Eng. Data, 56: 638-641. https://doi.org/10.1021/je1008284 | es_ES |
dc.description.references | Zhang W., Liu C., Chen S., Liu M., Zhang L., Lin S., Shu G., Yuan Z., Lin J., Peng G., Zhong Z., Yin L., Zhao L., Fu H. 2020. 2020. Poloxamer modified florfenicol instant microparticles for improved oral bioavailability. Colloids Surf. B Biointerfaces, 193: 1-8. https://doi.org/10.1016/j.colsurfb.2020.111078 | es_ES |
dc.description.references | Youssef F.S., El-Banna H.A., Elzorba H.Y., Galal A.M. 2019. Application of some nanoparticles in the field of veterinary medicine. Int. J. Vet. Sci. Med., 7: 78-93. https://doi.org/10.1080/23144599.2019.1691379 | es_ES |