- -

Centralized and Distributed Optimization Models for the Multi-Farmer Crop Planning Problem under Uncertainty: Application to a Fresh Tomato Argentinean Supply Chain Case Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Centralized and Distributed Optimization Models for the Multi-Farmer Crop Planning Problem under Uncertainty: Application to a Fresh Tomato Argentinean Supply Chain Case Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alemany Díaz, María Del Mar es_ES
dc.contributor.author Esteso, Ana es_ES
dc.contributor.author Ortiz Bas, Ángel es_ES
dc.contributor.author del Pino, Mariana es_ES
dc.date.accessioned 2022-07-08T18:05:06Z
dc.date.available 2022-07-08T18:05:06Z
dc.date.issued 2021-03 es_ES
dc.identifier.issn 0360-8352 es_ES
dc.identifier.uri http://hdl.handle.net/10251/183989
dc.description.abstract [EN] Imbalance between supply and demand of crops frequently occurs in markets originating an excess or shortage of supply in relation to demand. This causes high volatility and uncertainty in market prices, unmet demand, and waste, especially for fresh crops due to their limited shelf-life. This imbalance is mainly due to the inherent uncertainty present in the agricultural sector, the perishability of fresh crops, and the lack of coordination among farmers when making planting and harvesting decisions. Despite farmers usually plan the planting and harvesting in an individual way, there is a scarcity of research addressing the crop planning problem in a distributed manner and, even less, assessing their impact on the supply chain (SC) as a whole. In this paper, we developed a set of novel mathematical programming models to plan the planting and harvest of fresh tomatoes under a sustainable point of view for multi-farmer supply chains under uncertainty in different decision-making scenarios: i) distributed, ii) distributed with maximum and minimum land area constraints to be planted for each crop, iii) distributed with information sharing, and iv) centralized. Then, for each distributed scenario, the individual solution per farmer as regards the planting and harvesting decisions per crop are integrated to obtain the overall supply to satisfy the markets demand. This allows the assessment of the farmers¿ real performance and the impact of their individual decisions to the entire SC performance. We also compare the results obtained for each scenario with the centralized model in terms of economic, environmental, and social impact. The experimental design shows that, when integrating the solutions for the whole SC, significant differences between planned and real results are obtained in each scenario as regards the gross margin per hectare, unmet demand, waste, and unfairness between farmers, being the distributed model with information sharing the most similar to the centralized one. The results show that uncertainty consideration in models improves the gross margin and the unfairness among farmers in all scenarios for both, planned and real evaluation. es_ES
dc.description.sponsorship The authors acknowledge the partial support of the European Union's research and innovation programme under the H2020 Marie Sklodowska-Curie Actions with the grant agreement No 691249, Project entitled 'Enhancing and Implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems' (RUC-APS). The second and third author also acknowledges the partial support of the Programme of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport [grant number FPU15/03595]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers & Industrial Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Planting es_ES
dc.subject Harvesting es_ES
dc.subject Fuzzy optimization es_ES
dc.subject Centralized and distributed decision-making es_ES
dc.subject Fresh tomato supply chain es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Centralized and Distributed Optimization Models for the Multi-Farmer Crop Planning Problem under Uncertainty: Application to a Fresh Tomato Argentinean Supply Chain Case Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cie.2020.107048 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/691249/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03595/ES/FPU15%2F03595/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Alemany Díaz, MDM.; Esteso, A.; Ortiz Bas, Á.; Del Pino, M. (2021). Centralized and Distributed Optimization Models for the Multi-Farmer Crop Planning Problem under Uncertainty: Application to a Fresh Tomato Argentinean Supply Chain Case Study. Computers & Industrial Engineering. 153:1-24. https://doi.org/10.1016/j.cie.2020.107048 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cie.2020.107048 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 153 es_ES
dc.relation.pasarela S\423584 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem