- -

FIWARE based low-cost wireless acoustic sensor network for monitoring and classification of urban soundscape

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

FIWARE based low-cost wireless acoustic sensor network for monitoring and classification of urban soundscape

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arce Vila, Pau es_ES
dc.contributor.author Salvo, David es_ES
dc.contributor.author Piñero, Gema es_ES
dc.contributor.author Gonzalez, Alberto es_ES
dc.date.accessioned 2022-07-14T18:04:17Z
dc.date.available 2022-07-14T18:04:17Z
dc.date.issued 2021-09-04 es_ES
dc.identifier.issn 1389-1286 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184215
dc.description.abstract [EN] This work presents a wireless acoustic sensor network (WASN) that monitors urban environments by recognizing a given set of sound events or classes. The nodes of the WASN are Raspberry Pi devices that not only record the ambient sound, but also detect and recognize different sound events. All the signal processing tasks, from the recording to the classification carried out by a convolutional neural network (CNN), are run on Raspberry Pi devices. Due to the low cost of the proposed acoustic nodes, the system exhibits a very high potential scalability. Regarding the underlying WASN, it has been designed according to the open standard FIWARE, thus the whole system can be deployed without the need of proprietary software. Regarding the performance of the sound classifier, the proposed WASN achieves similar accuracy compared to other WASNs that make use of cloud computing. However, the proposed WASN significantly minimizes the network traffic since it does not exchange audio signals, but only contextual information in form of labels. On the other hand, most of the time the class reported by the WASN nodes is the "background'' soundscape, which usually contains no event of interest. This is the case when monitoring the soundscape of big avenues, where four events have been identified: "traffic'', "siren'', "horn'' and "noisy vehicles'', being the "traffic'' class associated to the background soundscape. In this paper, the use of a simple pre-detection stage prior to the CNN classification is proposed, with the aim of saving computation and power consumption at the nodes. The pre-detection stage is able to differentiate the other three relevant sounds from the "traffic'' and activates the classifier only when some of these three events is likely occurring. The proposed pre-detection stage has been validated through data recorded in the city of Valencia (Spain), achieving a reduction of the Raspberry Pi CPU's usage by a factor of six. es_ES
dc.description.sponsorship This work has been partially supported by European Commission (EC) through GA 774477 -MAtchUP, EC together with Spanish Government through RTI2018-098085-B-C41 (MINECO/FEDER) and Generalitat Valenciana through PROMETEO/2019/109. Authors would like to thank Daniel Sanz Montrull for aid in data collection. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Networks es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Acoustic sensor networks es_ES
dc.subject Urban sound classification es_ES
dc.subject FIWARE es_ES
dc.subject Edge computing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title FIWARE based low-cost wireless acoustic sensor network for monitoring and classification of urban soundscape es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.comnet.2021.108199 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/774477/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Arce Vila, P.; Salvo, D.; Piñero, G.; Gonzalez, A. (2021). FIWARE based low-cost wireless acoustic sensor network for monitoring and classification of urban soundscape. Computer Networks. 196:1-10. https://doi.org/10.1016/j.comnet.2021.108199 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.comnet.2021.108199 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 196 es_ES
dc.relation.pasarela S\440497 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem