- -

Catalytic Processes for Biomass-Derived Platform Molecules Valorisation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Catalytic Processes for Biomass-Derived Platform Molecules Valorisation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ventura, Maria es_ES
dc.contributor.author Marinas, Alberto es_ES
dc.contributor.author Domine, Marcelo Eduardo es_ES
dc.date.accessioned 2022-07-18T18:05:31Z
dc.date.available 2022-07-18T18:05:31Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1022-5528 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184370
dc.description.abstract [EN] Nowadays, biomass is an interesting raw material for chemical industry, and the valorisation of its derivatives becomes in a sustainable alternative against to the depletion of fossil sources necessary for the production of energy, fuels and chemicals. Different organic compounds, such as sugars, polyols, furanics, as well as several acids (i.e. levulinic acid, succinic acid, itaconic acid, 3-hydroxy-propionic acid, among others) can be obtained after a primary treatment of the lignocellulosic-type biomass. These bio-derived molecules can be used as "platform chemicals" for the synthesis of numerous chemical products (i.e. components and additives for fuels, solvents and paintings, new monomers for polymer industry, etc.). In this review, the possibilities of valorisation via novel catalytic processes of some of the most promising biomass(cellulose/hemicellulose)-derived intermediates and platform chemicals for obtaining both conventional and new high added-value chemicals for industry will be assessed, also including cascade-type (or "one-pot") catalytic processes recently developed. es_ES
dc.description.sponsorship MED acknowledges financial support by the Spanish Government (PGC2018-097277-B-I00 and SEV-2016-0683) and Generalitat Valenciana (GVA, PROMETEO/2018/006). AMA is thankful to MINECO financial support (ENE2016-81013-R (AEI/FEDER, UE) and Andalusian Government (UCO-FEDER Project CATOLIVAL, re. 1264113-R, 2018 call). MV thanks the EU H2020 for the Marie Skodowska-Curie (GA 754382), GOT ENERGY TALENT. The content of this article does not reflect the official opinion of the European Union. Responsibility for the information and views expressed herein lies entirely with the author(s). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomass es_ES
dc.subject Platform molecules es_ES
dc.subject Catalysis es_ES
dc.subject One-pot processes es_ES
dc.subject Green chemistry es_ES
dc.title Catalytic Processes for Biomass-Derived Platform Molecules Valorisation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11244-020-01309-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-81013-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/754382/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//1264113-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006//Intensificación de reactores catalíticos para la obtención altamente eficiente de combustibles y productos químicos/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Ventura, M.; Marinas, A.; Domine, ME. (2020). Catalytic Processes for Biomass-Derived Platform Molecules Valorisation. Topics in Catalysis. 63(9-10):846-865. https://doi.org/10.1007/s11244-020-01309-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11244-020-01309-9 es_ES
dc.description.upvformatpinicio 846 es_ES
dc.description.upvformatpfin 865 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.description.issue 9-10 es_ES
dc.relation.pasarela S\464099 es_ES
dc.contributor.funder GVA es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Dusselier M, Mascal M, Sels BF (2014) Top Curr Chem 353:1–40 es_ES
dc.description.references Gallezot P (2012) Chem Soc Rev 41:1538–1558 es_ES
dc.description.references Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044 es_ES
dc.description.references Corma Canos A, Iborra S, Velty A (2007) Chem. Rev. 107:2411–2502 es_ES
dc.description.references Liao Y, Koelewijn S-F, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M et al (2020) Science 367(6484):1385–1390 es_ES
dc.description.references Catalán-Martínez D, Domine ME, Serra JM (2018) Fuel 212:353–363 es_ES
dc.description.references Bozell JJ, Petersen GR (2010) Green Chem 12:539–554 es_ES
dc.description.references Huber GW, Corma A (2007) Angew Chem Int Ed Engl 46:7184–7201 es_ES
dc.description.references Budge JR, Attig TG, Pedersen SE (1995) Process for the hydrogenation of maleic acid to 1,4-butanediol, US Patent 5473086 es_ES
dc.description.references Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins, US Patent 085071 es_ES
dc.description.references Coulson DR, Manzer LE, Herron N (2001) Process for the preparation of alpha-methylene lactones, US Patent 6313318 es_ES
dc.description.references Manzer LE (2004) Appl Catal A Gen 272:249–256 es_ES
dc.description.references Limayem A, Ricke SC (2012) Prog Energy Combust Sci 38:449–467 es_ES
dc.description.references Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479–3500 es_ES
dc.description.references El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Carbohydr Polym 84:865–871 es_ES
dc.description.references Villandier N, Corma A (2011) Chemsuschem 4:508–513 es_ES
dc.description.references Ventura M, Cecilia JA, Rodríguez-Castellón E, Domine ME (2020) Green Chem 22:1393–1405 es_ES
dc.description.references Perrard A, Gallezot P, Joly J-P, Durand R, Baljou C, Coq B, Trens P (2007) Appl Catal A Gen 331:100–104 es_ES
dc.description.references Besson PGM (2001) From fine chemicals through heterogeneous catalysis. Wiley, Weinheim es_ES
dc.description.references Baudel HM, de Abreu CAM, Zaror CZ (2005) J Chem Technol Biotechnol 80:230 es_ES
dc.description.references Antal MJJ, Mok WS, Richards GN (1990) Carbohydr Res 199:91–109 es_ES
dc.description.references Cottier GDL (1991) Trends Herecyclic Chem 2:233 es_ES
dc.description.references Motagamwala AH, Won W, Sener C, Alonso DM, Maravelias CT, Dumesic JA (2018) Sci Adv 4:eaap9722 es_ES
dc.description.references “BIORIZON PLATFORM” can be found under https://www.biorizon.eu/research/ es_ES
dc.description.references Shaw PE, Tatum JH, Berry RE (1967) Carbohydr Res 5:266–273 es_ES
dc.description.references Ventura MED, Chávez-Sifontes M (2019) Curr Catal 8:20–40 es_ES
dc.description.references Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908 es_ES
dc.description.references Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Biochem.Biophys Rep 10:52–61 es_ES
dc.description.references Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Renew Sustain Energy Rev 66:631–653 es_ES
dc.description.references D’Angelo SC, Dall’Ara A, Mondelli C, Pérez-Ramírez J, Papadokonstantakis S (2018) ACS Sustain Chem Eng 6:16563–16572 es_ES
dc.description.references Lari GM, Pastore G, Haus M, Ding Y, Papadokonstantakis S, Mondelli C, Pérez-Ramírez J (2018) Energy Environ Sci 11:1012–1029 es_ES
dc.description.references Datta R, Henry M (2006) J Chem Technol Biotechnol 81:1119–1129 es_ES
dc.description.references Della Pina C, Falletta E, Rossi M (2011) Green Chem 13:1624–1632 es_ES
dc.description.references Jiang X, Meng X, Xian M (2009) Appl Microbiol Biotechnol 82:995 es_ES
dc.description.references David Y, Oh YH, Baylon MG, Baritugo K, Joo JC (2017) Appl Microbiol 53:411–451 es_ES
dc.description.references Ji RY, Ding Y, Shi TQ, Lin L, Huang H, Gao Z, Ji XJ (2018) Front Microbiol 9:1–7 es_ES
dc.description.references Brossmer C, Arntz D (2000) Process for the production of 1,3-propanediol, US Patent 6140543, to E. I. du Pont de Nemours and Company es_ES
dc.description.references Lam KT, Powell JP, Wieder PR (1997) Process for preparing 1,3-propanediol, WO Patent 9716250 es_ES
dc.description.references Meng X, Abraham TW, Tsobanakis P (2006) Process for preparation of 1,3-propanediol, US Patent 7126034, to Cargill Incorporated es_ES
dc.description.references Mine Gungormusler-Yilmaz NA, Cicek N, Levin DB (2016) Crit. Rev. Biotechnol. 36:482–494 es_ES
dc.description.references Serrano DP, Melero JA, Morales G, Iglesias J, Pizarro P (2018) Catal Rev Eng 60:1–70 es_ES
dc.description.references Tang T, Qi F, Liu H, Liu D (2013) Biofuels 4:651–667 es_ES
dc.description.references Vidra A, Németh A (2018) Period Polytech Chem Eng 62:156–166 es_ES
dc.description.references Celińska E (2015) Biotechnol J 10:242–243 es_ES
dc.description.references Kim C, Lee JH, Baek J, Kong DS, Na JG, Lee J, Sundstrom E, Park S, Kim JR (2020) Chemsuschem 17:1–11 es_ES
dc.description.references Karp E, Beckham G, Vardon D, Eaton T (2018),Systems and Methods for Producing Nitriles, US Patent 2018346411, to Alliance for Sustainable Energy, LLC es_ES
dc.description.references Li Chao TT, Zhu Q, Cui Z, Wang B, Fang Y (2018) Chem. Eng. Sci. 183:288–294 es_ES
dc.description.references Bomgardner MM (2020) Cargill gives biobased acrylic acid one more go, Chemical & Engineering News 98. Available at https://cen.acs.org/business/biobased-chemicals/Cargill-gives-biobased-acrylic-acid/98/i20 (accessed 5 June 2020) es_ES
dc.description.references Haas T, Meier M, Brossmer C, Arntz D (1998) Malonic Acid or Salt Preparation, DE Patent 19629372, to Evonik Operations GmbH es_ES
dc.description.references Zhang D, Hillmyer MA, Tolman WB (2004) Macromolecules 37:8198 es_ES
dc.description.references Andreeßen B, Taylor N, Steinbüchela A (2014) Appl Environ Microbiol 80:6574–6582 es_ES
dc.description.references Pinazo JM, Domine ME, Parvulescu V, Petru F (2015) Catal Today 239:17–24 es_ES
dc.description.references Cukalovic A, Stevens CV (2008) Biofuels. Bioprod Bioref 2:505 es_ES
dc.description.references Delhomme C, Weuster-Botz D, Kühn FE (2009) Green Chem 11:13 es_ES
dc.description.references Sajo Mienda B, Mohd Salleh F (2017) AIMS Bioeng 4:418–430 es_ES
dc.description.references Agarwal L, Isar J, Meghwanshi GK, Saxena RK (2006) J Appl Microbiol 100:1348–1354 es_ES
dc.description.references Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Bioresour Technol 99:1736 es_ES
dc.description.references Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Biotechnol Biofuels 8:181. https://doi.org/10.1186/s13068-015-0363-3 es_ES
dc.description.references Lee PC, Lee SY, Chang H (2010) Biosyst Eng 33:465 es_ES
dc.description.references Mazière A, Prinsen P, Garcia A, Luque R, Len C (2017) Bioprod Biorefining 11:908–931 es_ES
dc.description.references Grotkjær T (2015) Fundam Bioeng 5:499–546 es_ES
dc.description.references Datta R, Glassner DA, Jain MK, Roy JV (1992) Method for producing pyrrolidones from succinates from fermentation broths, US Patent 5168055, to BASF SE es_ES
dc.description.references Glassner DA, Datta R (1992) Process for the Production and Purification of Succinic Acid, US Patent 5143834 es_ES
dc.description.references Huh YS, Jun Y-S, Hong YK, Song H, Lee SY, Hong WH (2006) Process Biochem 41:1461 es_ES
dc.description.references Bechthold I, Bretz K, Kabasci S, Kopitzky R (2008) Chem Eng Technol 31:647 es_ES
dc.description.references Ferone M, Raganati F, Olivieri G, Marzocchella A (2019) Crit Rev Biotechnol 39:571–586 es_ES
dc.description.references Pillai UR, Sahle-Demessie E, Young D (2003) Appl Catal B 43:131 es_ES
dc.description.references Lancia R, Vaccari A, Fumagalli C, Armbruster E (1997) Process for the production of gamma-butyrolactone, US Patent 5698713 to Lonza SPA es_ES
dc.description.references Zajacek JG, Shum WP (2000) Butanediol Production, US Patent 6127584, to Arco Chemical Technology, L.P. es_ES
dc.description.references Tanabe Y, Toriya J, Sato M, ShiragaK (1977) Process for preparing butanediol and/or butenediol, US Patent 4062900, to Mitsubishi Chemical Industries es_ES
dc.description.references Turner K, Sharif M, Rathmell C, Kippax JW, Carter AB, Scarlett J, Reason AJ, Harris N (1988),Process for the production of butane-1,4-diol, US Patent 4751334 es_ES
dc.description.references De Thomas W, Taylor PD, Tomfohrde F (1992) Process for the production of gamma butyrolactone THF in predetermined amounts, US Patent 5149836, to ISP Investments Inc. es_ES
dc.description.references Budge JR, Attig TG, Pedersen SE (1995) Process for the hydrogenation of maleic acid to 1,4-butanediol, US Patent 5473086, to The Standard Oil Co. es_ES
dc.description.references Miya B (1973) A process for the production of tetrahydrofuran, DE Patent 2332906, to Kao Corp. es_ES
dc.description.references Chen LF, Guo P-J, Zhu L-J, Qiao M-H, Shen W, Xu H-L, Fan K-N (2009) Appl Catal A 356:129 es_ES
dc.description.references Wegman RW, Bryant DR (1993) Hydrogenation with Cu-Al catalysts, US Patent 5191091, to Union Carbide Chemicals & Plastics Technology Corporation es_ES
dc.description.references Hara Y, Kusaka H, Inagaki H, Takahashi K, Wada K (2000) J Catal 194:188 es_ES
dc.description.references Zhang Q, Wu Z, Xu L (1998) Ind Eng Chem Res 37:3525 es_ES
dc.description.references Castiglioni GL, Gazzano M, Stefani G, Vaccari A (1993) Stud Surf Sci Catal 78:275 es_ES
dc.description.references Suzuki S, Ichiki T, Ueno H (1994) Process for producing 1,4-butanediol and tetrahydrofuran, US Patent 5326889, to Tonen Corporation es_ES
dc.description.references Araya S, Hirano S, Hirano T, Takigawa S, Yamamoto T (1989) Production of gamma-butyrolactone, JP Patent 01143865 es_ES
dc.description.references Broecker FJ, Schwarzmann M (1977) Manufacture of butanediol and/or tetrahydrofuran from maleic acid and/or succinic anhydride via γ-butyrolactone, US Patent 4048196, to BASF Aktiengesellschaft es_ES
dc.description.references Jeong H, Kim TH, Kim KI (2006) Fuel Process Technol 87:497 es_ES
dc.description.references Hong UG, Hwang S, Seo JG, Yi J (2010) Catal Lett 138:28 es_ES
dc.description.references Takeda Y, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2016) Catal. Sci Technol 6:5668–5683 es_ES
dc.description.references Huang J, Dai W-L, Li H, Fan K (2007) J Catal 252:69 es_ES
dc.description.references Huang J, Dai W-L, Fan J (2009) J Catal 266:228 es_ES
dc.description.references Budroni G, Corma A (2008) J Catal 257:403 es_ES
dc.description.references Mabry MA, Prichard WW, Ziemecki SB (1985) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst, US Patent 4550185, to E.I. Du Pont de Nemours and Compan. es_ES
dc.description.references Ly BK, Tapin B, Epron F, Pinel C, Especel C, Besson M (2019) Catal Today 0–1 es_ES
dc.description.references Di X, Li C, Zhang B, Qi J, Li W, Su D, Liang C (2017) Ind Eng Chem Res 56:4672–4683 es_ES
dc.description.references Tooley PA, Black JR (1999) Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution, US Patent 5985789 es_ES
dc.description.references Bhattscharyya A, Maynard A (2006), US Patent 004212. es_ES
dc.description.references M. Matson (1990) Preparation of 2-pyrrolidone, US Patent 4904804, to Phillips Petroleum Co. es_ES
dc.description.references Hollstein EB (1974), Preparation of 2-pyrrolidone, US Patent 3812149, to Sun Research Development es_ES
dc.description.references White JF, Holladay JE, Zacher AA, Frye JG, Werpy TA (2014) Top Catal 57:1325–1334 es_ES
dc.description.references Fischer W, Klein D, Künkel A, Pinkos R, Scholten E (2011) Method for producing pyrrolidones from succinates from fermentation broths, US Patent 8017790 B2 es_ES
dc.description.references Oh IC, Kim CG, Lee DY, Kim IH, Kim JS, Kim SH, Hwang CG, Noh M, Hun J, Jung JS (2009) KR Patent 010864 es_ES
dc.description.references Luque R, Lin CSK, Du C, Macquarrie DJ, Koutinas A, Wang R, Webb C (2009) Green Chem 11:193 es_ES
dc.description.references “Ecoflex,” can be found under https://plastics-rubber.basf.com/global/en/performance_polymers/products/ecoflex.html es_ES
dc.description.references Landim LB, Miranda EO, de Araújo NA, Pinto JC, Cabral-Albuquerque ECM, Cunha S, Fialho RL (2019) J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117742 es_ES
dc.description.references Zabihi F, Koeppe H, Achazi K, Hedtrich S, Haag R (2019) Biomacromol 20:1867–1875 es_ES
dc.description.references Hu H, Zhang R, Jiang Y, Shi L, Wang J, Bin Ying W, Zhu J (2019) ACS Sustain Chem Eng 7:4255–4265 es_ES
dc.description.references Delaunay S, Lapujade P, Engasser JM, Goergen JL (2002) J Ind Microbiol Biotechnol 28:333 es_ES
dc.description.references Nampoothiri KM, Pandey A (1998) Bioresour Technol 63:101 es_ES
dc.description.references Jyothi AN, Sasikiran K, Nambisan B, Balagopalan C (2005) Process Biochem 40:3576 es_ES
dc.description.references Suresh S, Khan NS, Srivastava VC (2009) J Chem Reac Eng 7:A89 es_ES
dc.description.references Hirasawa T, Shimizu H (2016) Ind Biotechnol Prod Process 339–360 es_ES
dc.description.references Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Innasimuthu GM, Rajoo B, Alanzi KF, Rajaram SK (2019) J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2019.11.034 es_ES
dc.description.references Kumar R, Vikramachakravarthi D, Pal P (2014) Chem Eng Process Process Intensif 81:59–71 es_ES
dc.description.references Werpy T, Bozell J, Petersen G, Aden A, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, et al (20040 Results of screening for potential candidates from sugars and synthesis gas es_ES
dc.description.references Holladay JE, Werpy TA, Muzatko DS (2004) Appl Biochem Biotechnol 113–116:857 es_ES
dc.description.references Izumi Y, Akabori S, Fukawa H, Tatsumi S, Imaida M, Fukuda T (1965) Proc Intern Congr Catal 1965(2):1364 es_ES
dc.description.references Izumi Y, Imaida M, Fukawa H, Akabori S (1963) Bull Chem Soc Jap 1:21 es_ES
dc.description.references Adkins H, Billica HR (1948) J Am Chem Soc 70:3121–3125 es_ES
dc.description.references Antons S (1998) Process for the preparation of optically active alcohols, US Patent 5731479, to Bayer Aktiengesellschaf es_ES
dc.description.references Antons S, Beitzke B (1996) Process for preparing optically active amino alcohols, US Patent 5536879, to Bayer Aktiengesellschaft es_ES
dc.description.references Bhandare SG, Vaidya PD (2017) Ind Eng Chem Res 56:3797–3803 es_ES
dc.description.references Zhang W, Rao MY, Cheng ZJ, Zhu XY, Gao K, Yang J, Yang B, Liao XL (2015) Chem Pap 69:716–721 es_ES
dc.description.references Le Nôtre J, Scott EL, Franssen MCR, Sanders JPM (2011) Green Chem 13:807–809 es_ES
dc.description.references Beerthuis R, Rothenberg G, Shiju NR (2015) Green Chem 17:1341–1361 es_ES
dc.description.references Xu X, But A, Wever R, Hollmann F (2019) ChemCatChem 1:1–5 es_ES
dc.description.references De Schouwer F, Claes L, Claes N, Bals S, Degrève J, De Vos DE (2015) Green Chem 17:2263–2270 es_ES
dc.description.references Suganuma S, Otani A, Joka S, Asako H, Takagi R, Tsuji E, Katada N (2019) Chemsuschem 12:1381–1389 es_ES
dc.description.references Trant AG, Baddeley CJ (2011) J Phys Chem C 115:1025–1030 es_ES
dc.description.references Yue YN, Meng WJ, Liu L, Hu QL, Wang H, Lu JX (2018) Electrochim Acta 260:606–613 es_ES
dc.description.references Shih I-L, Van Y-T (2001) Biores Technol 79:207 es_ES
dc.description.references Richard A, Margaritis A (2001) Crit Rev Biotechnol 21:219 es_ES
dc.description.references Ajayeoba TA, Dula S, Ijabadeniyi OA (2019) Front Microbiol. https://doi.org/10.3389/fmicb.2019.00771 es_ES
dc.description.references Müslüm Altun (2019) Trak Univ J Nat Sci 20:27–34 es_ES
dc.description.references Cao M, Feng J, Sirisansaneeyakul S, Song C, Chisti Y (2018) Biotechnol Adv 36:1424–1433 es_ES
dc.description.references Okabe M, Lies D, Kanamasa S (2009) Appl Microbiol Biotechnol 84:597 es_ES
dc.description.references Gowda RR, Chen EYX (2019) Chemsuschem 12:973–977 es_ES
dc.description.references Cunha da Cruz J (2018) Machado de Castro a, Camporese Sérvulo ef, 3 Biotech 8:1–15 es_ES
dc.description.references Nemestóthy N, Komáromy P, Bakonyi P, Tóth AL, Tóth G, Gubicza L, Bélafi-Bakó K (2019) Waste Biomass Valorization. https://doi.org/10.1007/s12649-019-00729-3 es_ES
dc.description.references Regestein L, Klement T, Grande P, Kreyenschulte D, Heyman B, Maßmann T, Eggert A, Sengpiel R, Wang Y, Wierckx N et al (2018) Biotechnol Biofuels 11:1–11 es_ES
dc.description.references Steiger MG, Wierckx N, Blank LM, Mattanovich D, Sauer M (2016) Ind Biotechnol Prod Process 5:453–472 es_ES
dc.description.references Yang J, Xu H, Jiang J, Zhang N, Xie J, Wei M (2019) J Zhao 4:135–142 es_ES
dc.description.references Yahiro K, Takahama T, Park Y, Okabe M (1995) J Ferm Bioeng 79:506 es_ES
dc.description.references Hevekerl A, Kuenz A, Vorlop KD (2014) Appl Microbiol Biotechnol 98:10005–10012 es_ES
dc.description.references Liu X, Wang X, Liu Q, Xu G, Li X, Mu X (2016) Catal Today 274:88–93 es_ES
dc.description.references Park DS, Abdelrahman OA, Vinter KP, Howe PM, Bond JQ, Reineke TM, Zhang K, Dauenhauer PJ, Sustain ACS (2018) Chem Eng 6:9394–9402 es_ES
dc.description.references Spanjers CS, Schneiderman DK, Wang JZ, Wang J, Hillmyer MA, Zhang K, Dauenhauer PJ (2016) ChemCatChem 8:3031–3035 es_ES
dc.description.references Abdelrahman OA, Park DS, Vinter KP, Spanjers CS, Ren L, Cho HJ, Zhang K, Fan W, Tsapatsis M, Dauenhauer PJ (2017) ACS Catal 7:1428–1431 es_ES
dc.description.references Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-ŁUkasik R (2015) Catal Today 239:38–43 es_ES
dc.description.references Veerabagu U, Jaikumar G, Fushen L (2019) J Polym Environ 27:2756–2768 es_ES
dc.description.references Huang Q, Yu W, Lu F, Lu R, Si X, Gao J, Xu J (2019) Catal Today 319:197–205 es_ES
dc.description.references Louven Y, Schute K, Palkovits R (2019) ChemCatChem 11:439–442 es_ES
dc.description.references Haus MO, Louven Y, Palkovits R (2019) Green Chem 21:6268–6276 es_ES
dc.description.references Chedid R, Melder J, Dostalek R, Pastre J, Tan A (2014) Process for preparing pyrrolidine, US Patent 0018547 A1, to BASF SE es_ES
dc.description.references Hass H, Jasne S, Moreau R (1984) Itaconamide Compounds and Methods of Preparation, US Patent 4480125, to Polaroid Corporation es_ES
dc.description.references Bohre A, Hočevar B, Grilc M, Likozar B (2019) Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.117889 es_ES
dc.description.references Pirmoradi M, Kastner JR, Sustain ACS (2017) Chem Eng 5:1517–1527 es_ES
dc.description.references Di X, Zhang Y, Fu J, Yu Q, Wang Z, Yuan Z, Sustain ACS (2020) Chem Eng 8:1805–1812 es_ES
dc.description.references Pérocheau Arnaud S, Andreou E, Pereira Köster LVG, Robert T, Sustain ACS (2019) Chem Eng 8(3):1583–1590 es_ES
dc.description.references Wang XC, Song YJ, Huang L, Wang H, Huang CP, Li CQ (2019) Catal. Sci Technol 9:1669–1679 es_ES
dc.description.references Xu J, Cao F, Li T, Zhang S, Gao C, Wu Y (2016) J Surf Deterg 19:373–379 es_ES
dc.description.references Sakthivel M, Franklin DS, Sudarsan S, Chitra G, Sridharan TB, Guhanathan S, Appl SN (2019) Sci 1:146. https://doi.org/10.1007/s42452-018-0156-y es_ES
dc.description.references Teleky BE, Vodnar DC (2019) Polymers (Basel) 11(6):1035. https://doi.org/10.3390/polym11061035 es_ES
dc.description.references Trotta JT, Watts A, Wong AR, Lapointe AM, Hillmyer MA, Fors BP, Sustain ACS (2019) Chem Eng 7:2691–2701 es_ES
dc.description.references Giacobazzi G, Gioia C, Colonna M, Celli A, Sustain ACS (2019) Chem Eng 7:5553–5559 es_ES
dc.description.references Szöllosi G, Balazsik K, Bartok M (2007) Appl Catal A 319:193 es_ES
dc.description.references Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2008) J. Catal. 91:5 es_ES
dc.description.references Guo R, Wang Y, Shan X, Han Y, Cao Z, Zheng H (2019) Carbon N Y 152:671–679 es_ES
dc.description.references Quadri SAI, Das TC, Malik MS, Seddigi ZS, Farooqui M (2016) ChemistrySelect 1:4602–4606 es_ES
dc.description.references Kasar SB, Thopate SR (2019) Curr Organocatal 6:231–237 es_ES
dc.description.references Timokhin BV, Baransky VA, Eliseeva GD (1999) Russ Chem Rev 68:73–84 es_ES
dc.description.references Rangarajan S, Bhan A, Daoutidis P (2010) Ind Eng Chem Res 49:10459–10470 es_ES
dc.description.references Shilling WL (1996) US Patent 32355562 es_ES
dc.description.references Fitspatrick SW (1990) Lignocellulose degradation to furfural and levulinic acid, US Patent 4897497, to Biofine Incorporated es_ES
dc.description.references Fitzpatrick SW (2002) Final technical report commercialization of the biofine technology for levulinic acid production from paper sludge, BioMetics Inc., Report No DOE/CE/41178, (http://www.Osti.Gov/Bridge), US Department Of Energy: Washington DC es_ES
dc.description.references Manzer LE (2004) Biomass derivatives: a sustainable source of chemicals; National Science Foundation Workshop: Catalysis for Renewables Conversion, National Science Foundation: Washington, DC es_ES
dc.description.references Schraufnagel RA, Rase HF (1975) Ind Eng Chem Prod Res Dev 14:40 es_ES
dc.description.references Elliott DC, Frye JG (1999), US Patent 5883266, to Battelle Memorial Institute es_ES
dc.description.references Luque R, Clark JH, Yoshida K (2009) Chem Commun 1:5305 es_ES
dc.description.references Luque R, Clark JH (2010) Catal Commun 1:928 es_ES
dc.description.references Manzer LE (2002) WO Patent 2002074760. es_ES
dc.description.references Manzer LE (2003) US Patent 20030055270. es_ES
dc.description.references Dunlop AP, Madden J (1957) US Patent 2786852 es_ES
dc.description.references Manzer LE, Hutchenson KW (2003) US Patent 2004254384 es_ES
dc.description.references Kopetzki D, Antonietti M (2010) Green Chem 12:656 es_ES
dc.description.references Deng L, Li J, Lai D-M, Fu Y, Guo Q-X (2009) Angew Chem Int Ed 48:6529 es_ES
dc.description.references Puts RD, Brandenburg C, Tarburton KR (2002) US Patent 2002143195 es_ES
dc.description.references Coulson DR, Manzen LE, Herron N (2001) US Patent 6313318 es_ES
dc.description.references Manzer LE (2004) Appl Catal A 272:249 es_ES
dc.description.references Corma A, Iborra S (2007) Chem Rev 107:2411 es_ES
dc.description.references Lourvanij K, Rorrer GL (1994) Appl Catal A 109:147 es_ES
dc.description.references Manzer LE (2005) US Patent 0210738 A1, to DuPont es_ES
dc.description.references Manzer LE (2005) US Patent 0171374 es_ES
dc.description.references Rae A, Hodgson W (2003) WO Patent 002696 A1, to AAE Technologies International PLC es_ES
dc.description.references Crook LR, Jansen BA, Spencer KE, Watson DH (1996) GB Patent 1036694 es_ES
dc.description.references Manzer LE, Herkes FE (2004) US Patent 2004192933 es_ES
dc.description.references Dunlop AP, Smith S (1955) US Patent 6743819 es_ES
dc.description.references Sonoda N, Tsutsumi S (1963) Bull Chem Soc Jpn 36:1311 es_ES
dc.description.references Pileidis FD, Titirici M-M (2016) Chemsuschem 9:562–582 es_ES
dc.description.references Hayes DJ (2009) Catal. Today 1:145 es_ES
dc.description.references Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT (2008) Top Catal 48:49130 es_ES
dc.description.references Bianchi M, Menchi G, Francalanci F, Piacenti F, Matteoli U, Frediani P (1980) J Organomet Chem 1:188 es_ES
dc.description.references Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J (2010) Angew Chem Int Ed 49:5510 es_ES
dc.description.references Serrano-Ruiz JC, West RM, Dumesic JA (2010) Annu Rev Chem Biomol Eng 1:79 es_ES
dc.description.references Simonetti DA, Dumesic JA (2009) Catal Rev 51:441 es_ES
dc.description.references Serrano-Ruiz JC, Wang D (2010) Green Chem 12:574 es_ES
dc.description.references Horvath IT, Mehdi H, Fabos V, Boda L (2008) Green Chem 10:238 es_ES
dc.description.references West RM, Liu ZL, Peter M (2008) Chemsuschem 1:417 es_ES
dc.description.references Kottke RH (1998) Kirk-Othmer Encyclopedia of Chemical Technology. In: Kroschwitz J, Howe-Grant M (eds) Organic reaction. Wiley, New York es_ES
dc.description.references Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C (2018) Front Chem 6:146 es_ES
dc.description.references Yamaguchi A, Mimura N, Shirai M, Sato O (2019) Acs Sustain Chem Eng 7:10445–10451 es_ES
dc.description.references Chheda B (2016) US Patent 025673 A1 es_ES
dc.description.references Yu SJ, Park N, Park ED, Yoo MJ (2015) J Ind Eng Chem 21:350–355 es_ES
dc.description.references Chen H, Qin L, Yu B (2015) Biomass Bioenerg 73:77–83 es_ES
dc.description.references Li X, Yang J, Xu R, Lu L, Kong F, Liang M, Jiang L, Nie S, Si C (2019) Ind Crops Prod 135:196–205 es_ES
dc.description.references Bernal HG, Galletti AMR, Garbarino G, Busca G, Finocchio E (2015) Appl Catal A Gen 502:388–398 es_ES
dc.description.references Doiseau A-C, Rataboul F, Burel L, Essayem N (2014) Catal Today 226:176–184 es_ES
dc.description.references Zhang L, Yu H, Wang P (2013) Bioresour Technol 136:515–521 es_ES
dc.description.references Gómez Millán G, Phiri J, Mäkelä M, Maloney T, Balu AM, Pineda A, Llorca J, Sixta H (2019) Appl Catal A Gen 585:117180 es_ES
dc.description.references McEvoy HS, Shalit H (1964) US Patent 3374184 es_ES
dc.description.references Zheng H-Y, Zhu Y-L, Teng B-T, Bai Z-Q, Zhang C-H, Xiang H-W, Li Y-W (2006) J Mol Catal A Chem 246:18–23 es_ES
dc.description.references Rao RS, Baker RTK, Vannice MA (1999) Catal Lett 60:51–57 es_ES
dc.description.references Nagaraja BM, Siva Kumar V, Shasikala V, Padmasri AH, Sreedhar B, David Raju B, Rama Rao KS (2003) Catal Commun 4:287–293 es_ES
dc.description.references Hao X-Y, Zhou W, Wang J-W, Zhang Y-Q, Liu S (2005) Chem. Lett. 34:1000–1001 es_ES
dc.description.references Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Catal Commun 6:633–637 es_ES
dc.description.references Kijeński J, Winiarek P, Paryjczak T, Lewicki A, Mikołajska A (2002) Appl Catal A Gen 233:171–182 es_ES
dc.description.references Frainier LJ, FinebergH (1980) DE Patent 3007139 es_ES
dc.description.references Hinnekens H (1984) DE Patent, 3425758 es_ES
dc.description.references De Thomas WR, Hort EV (1978) US Patent 4153578 es_ES
dc.description.references Baijun L, Lianhai L, Bingchun W, Tianxi C (1998) Katsuyoshi Iwatani. Appl Catal A Gen 171:117–122 es_ES
dc.description.references Li H, Luo H, Zhuang L, Dai W, Qiao M (2003) J Mol Catal A Chem 203:267–275 es_ES
dc.description.references Chen X, Li H, Luo H, Qiao M (2002) Appl Catal A Gen 233:13–20 es_ES
dc.description.references Corma A, Domine ME, Valencia S (2014) WO Patent 20144064318 es_ES
dc.description.references Mori S, Hamana R, Aoki T, Ayusawa T (1984) JP Patent 61134384 es_ES
dc.description.references Ayusawa T, Mori S, Aoki T, Hamana R (1984) JP Patent 60146885 es_ES
dc.description.references Wilson WC (1932) Org Synth es_ES
dc.description.references Franckland FWAFP (1936) J Chem Soc 13:265 es_ES
dc.description.references Isenhour LL (1936) US Patent 2041184 es_ES
dc.description.references Dunlop AP (1946) US Patent 2407866 es_ES
dc.description.references Verdeguer P, Merat N, Rigal L, Gaset A (1994) J Chem Technol Biotechnol 61:97–102 es_ES
dc.description.references Verdeguer P, Merat N, Gaset A (1994) Appl Catal A Gen 112:1–11 es_ES
dc.description.references Lecomte J, Finiels A, Geneste P, Moreau C (1998) Appl Catal A Gen 168:235–241 es_ES
dc.description.references Boulet JSO, Emo R, Faugeras P, Jobelin I, Laport F, Lecomte J, Moreau C, Roux MC, Roux G, Simminger J (1995) FR Patent 9513829 es_ES
dc.description.references Ventura M, Aresta M, Dibenedetto A (2016) Chemsuschem 9:1096–1100 es_ES
dc.description.references Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F, Dibenedetto A (2018) Chemsuschem 11:1305–1315 es_ES
dc.description.references Cottier L, Descotes G, Lewkowski J (1994) Polish J Chem 1:68 es_ES
dc.description.references Morikawa S, Teratake S (1977) JP Patent 54009260 es_ES
dc.description.references Sheldon RA (1991) In: Guisnet M, Barrault J, Bouchoule C, Duprez D, Pérot G, Maurel R, Montassier R (eds), Heterog. Catal. Fine Chem. II Elsevier, New York, pp 33–54 es_ES
dc.description.references Grushin V, Herron N (2002) Patent, 2003024947 es_ES
dc.description.references Durand G, Faugeras P, Laporte F, Moreau C, Neau MC, Roux G, Tichit D, Toutremepuich C (1995) WO Patent 9617836 es_ES
dc.description.references Moreau C, Durand R, Pourcheron C, Tichit D (1997) In: Blaser HU, Baiker A, Prins C (eds), Heterog. Catal. Fine Chem. IV, Elsevier, New York, pp 399–406 es_ES
dc.description.references Vinke P, de Wit D, De Goede TJW (1992) New Developments In Selective Oxidation By Heterogeneous Catalysis. Elsevier, Amsterdam es_ES
dc.description.references Verdeguer P, Merat N, Gaset A (1993) J Mol Catal 85:327–344 es_ES
dc.description.references Carlini C, Patrono P, Galletti AMR, Sbrana G, Zima V (2005) Appl Catal A Gen 289:197–204 es_ES
dc.description.references Faury A, Gaset A (1981) Inf Chim es_ES
dc.description.references Smirnov VA, Kulnevich VG, Soltovets GN, Semchemko DP (1974) US Patent 3847952 es_ES
dc.description.references Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30 es_ES
dc.description.references Ventura M, Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A (2018) Green Chem 20:3921–3926 es_ES
dc.description.references Trivedi J, Bhonsle AK, Atray N (2020) In: Kumar RP, Gnansounou E, Raman JK, Baskar B (eds), Academic Press, London, pp 427–448 es_ES
dc.description.references Si Z, Zhang X, Zuo M, Wang T, Sun Y, Tang X, Zeng X, Lin L (2020) Korean J Chem Eng 37:224–230 es_ES
dc.description.references Yuan H, Liu H, Du J, Liu K, Wang T, Liu L (2020) Appl Microbiol Biotechnol 104:527–543 es_ES
dc.description.references Ventura M, Dibenedetto A, Aresta M (2018) Inorg Chim Acta 470:11–21 es_ES
dc.description.references Ribeiro ML, Schuchardt U (2003) Catal Commun 4:83–86 es_ES
dc.description.references Bello S, Méndez-Trelles P, Rodil E, Feijoo G, Moreira MT (2020) Sep Purif Technol 233:116056 es_ES
dc.description.references Lisuzzo L, Cavallaro G, Milioto S, Lazzara G (2020) Appl Clay Sci 185:105416 es_ES
dc.description.references Tharani D, Ananthasubramanian M (2020), In Alam MA, Xu J-L, Wang Z (eds), Springer, Singapore, pp 373–396 es_ES
dc.description.references Pavlovskay NE, Gorkova IV, Gagarina IN, Gavrilova AY, Conf IOP (2020) Ser Earth Environ Sci 422:12120 es_ES
dc.description.references Silva SS, Felipe MG, Mancilha IM (1998) Appl Biochem Biotechnol 1:70–72 es_ES
dc.description.references Delgado Arcaño Y, Valmaña García OD, Mandelli D, Carvalho WA, Magalhães Pontes LA (2020) Catal Today 344:2–14 es_ES
dc.description.references Zhang X, Wilson K, Lee AF (2016) Chem Rev 116:12328–12368 es_ES
dc.description.references VenkateswarRao L, Goli JK, Gentela J, Koti S (2016) Bioresour Technol 213:299–310 es_ES
dc.description.references Sato O, Mimura N, Masuda Y, Shirai M, Yamaguchi A (2019) J Supercrit Fluids 144:14–18 es_ES
dc.description.references Hilpmann G, Steudler S, Ayubi MM, Pospiech A, Walther T, Bley T, Lange R (2019) Catal Lett 149:69–76 es_ES
dc.description.references Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Biotechnol Biofuels 1:16 es_ES
dc.description.references Verduyn C, Jzn JF, van Dijken JP, Scheffers WA, Microbiol FEMS (1985) Lett 30:313–317 es_ES
dc.description.references Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee S-M (2020) Biotechnol Biofuels 13:12 es_ES
dc.description.references Yin B, Jin X, Zhang G, Yan H, Zhang W, Liu X, Liu M, Yang C, Shen J, Sustain ACS (2020) Chem Eng 8:5305–5316 es_ES
dc.description.references Murzin DY, Garcia S, Russo V, Kilpiö T, Godina LI, Tokarev AV, Kirilin AV, Simakova IL, Poulston S, Sladkovskiy DA et al (2017) Ind Eng Chem Res 56:13240–13253 es_ES
dc.description.references Wang S-F, Fan M-H, He Y-T, Li Q-X (2019) Chinese J Chem Phys 32:513–520 es_ES
dc.description.references Moreno J, Iglesias J, Blanco J, Montero M, Morales G, Melero JA (2020) J Clean Prod 250:119568 es_ES
dc.description.references Zhang G, Chen T, Zhang Y, Liu T, Wang G (2020) Catal Lett. https://doi.org/10.1007/s10562-020-03129-8 es_ES
dc.description.references Guleria A, Kumari G, Saravanamurugan S (2020) In: Saravanamurugan S, Pandey A, Li H, Riisager ABTR (eds), Biomass, Biofuels, Biochemicals, Elsevier, New York, pp 433–457 es_ES
dc.description.references Yuan D, Li L, Li F, Wang Y, Wang F, Zhao N, Xiao F (2019) Chemsuschem 12:4986–4995 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem