Mostrar el registro sencillo del ítem
dc.contributor.author | Ventura, Maria | es_ES |
dc.contributor.author | Marinas, Alberto | es_ES |
dc.contributor.author | Domine, Marcelo Eduardo | es_ES |
dc.date.accessioned | 2022-07-18T18:05:31Z | |
dc.date.available | 2022-07-18T18:05:31Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 1022-5528 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/184370 | |
dc.description.abstract | [EN] Nowadays, biomass is an interesting raw material for chemical industry, and the valorisation of its derivatives becomes in a sustainable alternative against to the depletion of fossil sources necessary for the production of energy, fuels and chemicals. Different organic compounds, such as sugars, polyols, furanics, as well as several acids (i.e. levulinic acid, succinic acid, itaconic acid, 3-hydroxy-propionic acid, among others) can be obtained after a primary treatment of the lignocellulosic-type biomass. These bio-derived molecules can be used as "platform chemicals" for the synthesis of numerous chemical products (i.e. components and additives for fuels, solvents and paintings, new monomers for polymer industry, etc.). In this review, the possibilities of valorisation via novel catalytic processes of some of the most promising biomass(cellulose/hemicellulose)-derived intermediates and platform chemicals for obtaining both conventional and new high added-value chemicals for industry will be assessed, also including cascade-type (or "one-pot") catalytic processes recently developed. | es_ES |
dc.description.sponsorship | MED acknowledges financial support by the Spanish Government (PGC2018-097277-B-I00 and SEV-2016-0683) and Generalitat Valenciana (GVA, PROMETEO/2018/006). AMA is thankful to MINECO financial support (ENE2016-81013-R (AEI/FEDER, UE) and Andalusian Government (UCO-FEDER Project CATOLIVAL, re. 1264113-R, 2018 call). MV thanks the EU H2020 for the Marie Skodowska-Curie (GA 754382), GOT ENERGY TALENT. The content of this article does not reflect the official opinion of the European Union. Responsibility for the information and views expressed herein lies entirely with the author(s). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Topics in Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biomass | es_ES |
dc.subject | Platform molecules | es_ES |
dc.subject | Catalysis | es_ES |
dc.subject | One-pot processes | es_ES |
dc.subject | Green chemistry | es_ES |
dc.title | Catalytic Processes for Biomass-Derived Platform Molecules Valorisation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11244-020-01309-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-81013-R/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/754382/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//1264113-R/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F006//Intensificación de reactores catalíticos para la obtención altamente eficiente de combustibles y productos químicos/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Ventura, M.; Marinas, A.; Domine, ME. (2020). Catalytic Processes for Biomass-Derived Platform Molecules Valorisation. Topics in Catalysis. 63(9-10):846-865. https://doi.org/10.1007/s11244-020-01309-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11244-020-01309-9 | es_ES |
dc.description.upvformatpinicio | 846 | es_ES |
dc.description.upvformatpfin | 865 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 63 | es_ES |
dc.description.issue | 9-10 | es_ES |
dc.relation.pasarela | S\464099 | es_ES |
dc.contributor.funder | GVA | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Dusselier M, Mascal M, Sels BF (2014) Top Curr Chem 353:1–40 | es_ES |
dc.description.references | Gallezot P (2012) Chem Soc Rev 41:1538–1558 | es_ES |
dc.description.references | Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044 | es_ES |
dc.description.references | Corma Canos A, Iborra S, Velty A (2007) Chem. Rev. 107:2411–2502 | es_ES |
dc.description.references | Liao Y, Koelewijn S-F, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M et al (2020) Science 367(6484):1385–1390 | es_ES |
dc.description.references | Catalán-Martínez D, Domine ME, Serra JM (2018) Fuel 212:353–363 | es_ES |
dc.description.references | Bozell JJ, Petersen GR (2010) Green Chem 12:539–554 | es_ES |
dc.description.references | Huber GW, Corma A (2007) Angew Chem Int Ed Engl 46:7184–7201 | es_ES |
dc.description.references | Budge JR, Attig TG, Pedersen SE (1995) Process for the hydrogenation of maleic acid to 1,4-butanediol, US Patent 5473086 | es_ES |
dc.description.references | Fagan PJ, Korovessi E, Manzer LE, Mehta R, Thomas SM (2003) Preparation of levulinic acid esters and formic acid esters from biomass and olefins, US Patent 085071 | es_ES |
dc.description.references | Coulson DR, Manzer LE, Herron N (2001) Process for the preparation of alpha-methylene lactones, US Patent 6313318 | es_ES |
dc.description.references | Manzer LE (2004) Appl Catal A Gen 272:249–256 | es_ES |
dc.description.references | Limayem A, Ricke SC (2012) Prog Energy Combust Sci 38:449–467 | es_ES |
dc.description.references | Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479–3500 | es_ES |
dc.description.references | El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Carbohydr Polym 84:865–871 | es_ES |
dc.description.references | Villandier N, Corma A (2011) Chemsuschem 4:508–513 | es_ES |
dc.description.references | Ventura M, Cecilia JA, Rodríguez-Castellón E, Domine ME (2020) Green Chem 22:1393–1405 | es_ES |
dc.description.references | Perrard A, Gallezot P, Joly J-P, Durand R, Baljou C, Coq B, Trens P (2007) Appl Catal A Gen 331:100–104 | es_ES |
dc.description.references | Besson PGM (2001) From fine chemicals through heterogeneous catalysis. Wiley, Weinheim | es_ES |
dc.description.references | Baudel HM, de Abreu CAM, Zaror CZ (2005) J Chem Technol Biotechnol 80:230 | es_ES |
dc.description.references | Antal MJJ, Mok WS, Richards GN (1990) Carbohydr Res 199:91–109 | es_ES |
dc.description.references | Cottier GDL (1991) Trends Herecyclic Chem 2:233 | es_ES |
dc.description.references | Motagamwala AH, Won W, Sener C, Alonso DM, Maravelias CT, Dumesic JA (2018) Sci Adv 4:eaap9722 | es_ES |
dc.description.references | “BIORIZON PLATFORM” can be found under https://www.biorizon.eu/research/ | es_ES |
dc.description.references | Shaw PE, Tatum JH, Berry RE (1967) Carbohydr Res 5:266–273 | es_ES |
dc.description.references | Ventura MED, Chávez-Sifontes M (2019) Curr Catal 8:20–40 | es_ES |
dc.description.references | Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham GT, Sels BF (2018) Chem Soc Rev 47:852–908 | es_ES |
dc.description.references | Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Biochem.Biophys Rep 10:52–61 | es_ES |
dc.description.references | Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Renew Sustain Energy Rev 66:631–653 | es_ES |
dc.description.references | D’Angelo SC, Dall’Ara A, Mondelli C, Pérez-Ramírez J, Papadokonstantakis S (2018) ACS Sustain Chem Eng 6:16563–16572 | es_ES |
dc.description.references | Lari GM, Pastore G, Haus M, Ding Y, Papadokonstantakis S, Mondelli C, Pérez-Ramírez J (2018) Energy Environ Sci 11:1012–1029 | es_ES |
dc.description.references | Datta R, Henry M (2006) J Chem Technol Biotechnol 81:1119–1129 | es_ES |
dc.description.references | Della Pina C, Falletta E, Rossi M (2011) Green Chem 13:1624–1632 | es_ES |
dc.description.references | Jiang X, Meng X, Xian M (2009) Appl Microbiol Biotechnol 82:995 | es_ES |
dc.description.references | David Y, Oh YH, Baylon MG, Baritugo K, Joo JC (2017) Appl Microbiol 53:411–451 | es_ES |
dc.description.references | Ji RY, Ding Y, Shi TQ, Lin L, Huang H, Gao Z, Ji XJ (2018) Front Microbiol 9:1–7 | es_ES |
dc.description.references | Brossmer C, Arntz D (2000) Process for the production of 1,3-propanediol, US Patent 6140543, to E. I. du Pont de Nemours and Company | es_ES |
dc.description.references | Lam KT, Powell JP, Wieder PR (1997) Process for preparing 1,3-propanediol, WO Patent 9716250 | es_ES |
dc.description.references | Meng X, Abraham TW, Tsobanakis P (2006) Process for preparation of 1,3-propanediol, US Patent 7126034, to Cargill Incorporated | es_ES |
dc.description.references | Mine Gungormusler-Yilmaz NA, Cicek N, Levin DB (2016) Crit. Rev. Biotechnol. 36:482–494 | es_ES |
dc.description.references | Serrano DP, Melero JA, Morales G, Iglesias J, Pizarro P (2018) Catal Rev Eng 60:1–70 | es_ES |
dc.description.references | Tang T, Qi F, Liu H, Liu D (2013) Biofuels 4:651–667 | es_ES |
dc.description.references | Vidra A, Németh A (2018) Period Polytech Chem Eng 62:156–166 | es_ES |
dc.description.references | Celińska E (2015) Biotechnol J 10:242–243 | es_ES |
dc.description.references | Kim C, Lee JH, Baek J, Kong DS, Na JG, Lee J, Sundstrom E, Park S, Kim JR (2020) Chemsuschem 17:1–11 | es_ES |
dc.description.references | Karp E, Beckham G, Vardon D, Eaton T (2018),Systems and Methods for Producing Nitriles, US Patent 2018346411, to Alliance for Sustainable Energy, LLC | es_ES |
dc.description.references | Li Chao TT, Zhu Q, Cui Z, Wang B, Fang Y (2018) Chem. Eng. Sci. 183:288–294 | es_ES |
dc.description.references | Bomgardner MM (2020) Cargill gives biobased acrylic acid one more go, Chemical & Engineering News 98. Available at https://cen.acs.org/business/biobased-chemicals/Cargill-gives-biobased-acrylic-acid/98/i20 (accessed 5 June 2020) | es_ES |
dc.description.references | Haas T, Meier M, Brossmer C, Arntz D (1998) Malonic Acid or Salt Preparation, DE Patent 19629372, to Evonik Operations GmbH | es_ES |
dc.description.references | Zhang D, Hillmyer MA, Tolman WB (2004) Macromolecules 37:8198 | es_ES |
dc.description.references | Andreeßen B, Taylor N, Steinbüchela A (2014) Appl Environ Microbiol 80:6574–6582 | es_ES |
dc.description.references | Pinazo JM, Domine ME, Parvulescu V, Petru F (2015) Catal Today 239:17–24 | es_ES |
dc.description.references | Cukalovic A, Stevens CV (2008) Biofuels. Bioprod Bioref 2:505 | es_ES |
dc.description.references | Delhomme C, Weuster-Botz D, Kühn FE (2009) Green Chem 11:13 | es_ES |
dc.description.references | Sajo Mienda B, Mohd Salleh F (2017) AIMS Bioeng 4:418–430 | es_ES |
dc.description.references | Agarwal L, Isar J, Meghwanshi GK, Saxena RK (2006) J Appl Microbiol 100:1348–1354 | es_ES |
dc.description.references | Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Bioresour Technol 99:1736 | es_ES |
dc.description.references | Bradfield MFA, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Biotechnol Biofuels 8:181. https://doi.org/10.1186/s13068-015-0363-3 | es_ES |
dc.description.references | Lee PC, Lee SY, Chang H (2010) Biosyst Eng 33:465 | es_ES |
dc.description.references | Mazière A, Prinsen P, Garcia A, Luque R, Len C (2017) Bioprod Biorefining 11:908–931 | es_ES |
dc.description.references | Grotkjær T (2015) Fundam Bioeng 5:499–546 | es_ES |
dc.description.references | Datta R, Glassner DA, Jain MK, Roy JV (1992) Method for producing pyrrolidones from succinates from fermentation broths, US Patent 5168055, to BASF SE | es_ES |
dc.description.references | Glassner DA, Datta R (1992) Process for the Production and Purification of Succinic Acid, US Patent 5143834 | es_ES |
dc.description.references | Huh YS, Jun Y-S, Hong YK, Song H, Lee SY, Hong WH (2006) Process Biochem 41:1461 | es_ES |
dc.description.references | Bechthold I, Bretz K, Kabasci S, Kopitzky R (2008) Chem Eng Technol 31:647 | es_ES |
dc.description.references | Ferone M, Raganati F, Olivieri G, Marzocchella A (2019) Crit Rev Biotechnol 39:571–586 | es_ES |
dc.description.references | Pillai UR, Sahle-Demessie E, Young D (2003) Appl Catal B 43:131 | es_ES |
dc.description.references | Lancia R, Vaccari A, Fumagalli C, Armbruster E (1997) Process for the production of gamma-butyrolactone, US Patent 5698713 to Lonza SPA | es_ES |
dc.description.references | Zajacek JG, Shum WP (2000) Butanediol Production, US Patent 6127584, to Arco Chemical Technology, L.P. | es_ES |
dc.description.references | Tanabe Y, Toriya J, Sato M, ShiragaK (1977) Process for preparing butanediol and/or butenediol, US Patent 4062900, to Mitsubishi Chemical Industries | es_ES |
dc.description.references | Turner K, Sharif M, Rathmell C, Kippax JW, Carter AB, Scarlett J, Reason AJ, Harris N (1988),Process for the production of butane-1,4-diol, US Patent 4751334 | es_ES |
dc.description.references | De Thomas W, Taylor PD, Tomfohrde F (1992) Process for the production of gamma butyrolactone THF in predetermined amounts, US Patent 5149836, to ISP Investments Inc. | es_ES |
dc.description.references | Budge JR, Attig TG, Pedersen SE (1995) Process for the hydrogenation of maleic acid to 1,4-butanediol, US Patent 5473086, to The Standard Oil Co. | es_ES |
dc.description.references | Miya B (1973) A process for the production of tetrahydrofuran, DE Patent 2332906, to Kao Corp. | es_ES |
dc.description.references | Chen LF, Guo P-J, Zhu L-J, Qiao M-H, Shen W, Xu H-L, Fan K-N (2009) Appl Catal A 356:129 | es_ES |
dc.description.references | Wegman RW, Bryant DR (1993) Hydrogenation with Cu-Al catalysts, US Patent 5191091, to Union Carbide Chemicals & Plastics Technology Corporation | es_ES |
dc.description.references | Hara Y, Kusaka H, Inagaki H, Takahashi K, Wada K (2000) J Catal 194:188 | es_ES |
dc.description.references | Zhang Q, Wu Z, Xu L (1998) Ind Eng Chem Res 37:3525 | es_ES |
dc.description.references | Castiglioni GL, Gazzano M, Stefani G, Vaccari A (1993) Stud Surf Sci Catal 78:275 | es_ES |
dc.description.references | Suzuki S, Ichiki T, Ueno H (1994) Process for producing 1,4-butanediol and tetrahydrofuran, US Patent 5326889, to Tonen Corporation | es_ES |
dc.description.references | Araya S, Hirano S, Hirano T, Takigawa S, Yamamoto T (1989) Production of gamma-butyrolactone, JP Patent 01143865 | es_ES |
dc.description.references | Broecker FJ, Schwarzmann M (1977) Manufacture of butanediol and/or tetrahydrofuran from maleic acid and/or succinic anhydride via γ-butyrolactone, US Patent 4048196, to BASF Aktiengesellschaft | es_ES |
dc.description.references | Jeong H, Kim TH, Kim KI (2006) Fuel Process Technol 87:497 | es_ES |
dc.description.references | Hong UG, Hwang S, Seo JG, Yi J (2010) Catal Lett 138:28 | es_ES |
dc.description.references | Takeda Y, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2016) Catal. Sci Technol 6:5668–5683 | es_ES |
dc.description.references | Huang J, Dai W-L, Li H, Fan K (2007) J Catal 252:69 | es_ES |
dc.description.references | Huang J, Dai W-L, Fan J (2009) J Catal 266:228 | es_ES |
dc.description.references | Budroni G, Corma A (2008) J Catal 257:403 | es_ES |
dc.description.references | Mabry MA, Prichard WW, Ziemecki SB (1985) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst, US Patent 4550185, to E.I. Du Pont de Nemours and Compan. | es_ES |
dc.description.references | Ly BK, Tapin B, Epron F, Pinel C, Especel C, Besson M (2019) Catal Today 0–1 | es_ES |
dc.description.references | Di X, Li C, Zhang B, Qi J, Li W, Su D, Liang C (2017) Ind Eng Chem Res 56:4672–4683 | es_ES |
dc.description.references | Tooley PA, Black JR (1999) Ru, Sn/oxide catalyst and process for hydrogenation in acidic aqueous solution, US Patent 5985789 | es_ES |
dc.description.references | Bhattscharyya A, Maynard A (2006), US Patent 004212. | es_ES |
dc.description.references | M. Matson (1990) Preparation of 2-pyrrolidone, US Patent 4904804, to Phillips Petroleum Co. | es_ES |
dc.description.references | Hollstein EB (1974), Preparation of 2-pyrrolidone, US Patent 3812149, to Sun Research Development | es_ES |
dc.description.references | White JF, Holladay JE, Zacher AA, Frye JG, Werpy TA (2014) Top Catal 57:1325–1334 | es_ES |
dc.description.references | Fischer W, Klein D, Künkel A, Pinkos R, Scholten E (2011) Method for producing pyrrolidones from succinates from fermentation broths, US Patent 8017790 B2 | es_ES |
dc.description.references | Oh IC, Kim CG, Lee DY, Kim IH, Kim JS, Kim SH, Hwang CG, Noh M, Hun J, Jung JS (2009) KR Patent 010864 | es_ES |
dc.description.references | Luque R, Lin CSK, Du C, Macquarrie DJ, Koutinas A, Wang R, Webb C (2009) Green Chem 11:193 | es_ES |
dc.description.references | “Ecoflex,” can be found under https://plastics-rubber.basf.com/global/en/performance_polymers/products/ecoflex.html | es_ES |
dc.description.references | Landim LB, Miranda EO, de Araújo NA, Pinto JC, Cabral-Albuquerque ECM, Cunha S, Fialho RL (2019) J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117742 | es_ES |
dc.description.references | Zabihi F, Koeppe H, Achazi K, Hedtrich S, Haag R (2019) Biomacromol 20:1867–1875 | es_ES |
dc.description.references | Hu H, Zhang R, Jiang Y, Shi L, Wang J, Bin Ying W, Zhu J (2019) ACS Sustain Chem Eng 7:4255–4265 | es_ES |
dc.description.references | Delaunay S, Lapujade P, Engasser JM, Goergen JL (2002) J Ind Microbiol Biotechnol 28:333 | es_ES |
dc.description.references | Nampoothiri KM, Pandey A (1998) Bioresour Technol 63:101 | es_ES |
dc.description.references | Jyothi AN, Sasikiran K, Nambisan B, Balagopalan C (2005) Process Biochem 40:3576 | es_ES |
dc.description.references | Suresh S, Khan NS, Srivastava VC (2009) J Chem Reac Eng 7:A89 | es_ES |
dc.description.references | Hirasawa T, Shimizu H (2016) Ind Biotechnol Prod Process 339–360 | es_ES |
dc.description.references | Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Innasimuthu GM, Rajoo B, Alanzi KF, Rajaram SK (2019) J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2019.11.034 | es_ES |
dc.description.references | Kumar R, Vikramachakravarthi D, Pal P (2014) Chem Eng Process Process Intensif 81:59–71 | es_ES |
dc.description.references | Werpy T, Bozell J, Petersen G, Aden A, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, et al (20040 Results of screening for potential candidates from sugars and synthesis gas | es_ES |
dc.description.references | Holladay JE, Werpy TA, Muzatko DS (2004) Appl Biochem Biotechnol 113–116:857 | es_ES |
dc.description.references | Izumi Y, Akabori S, Fukawa H, Tatsumi S, Imaida M, Fukuda T (1965) Proc Intern Congr Catal 1965(2):1364 | es_ES |
dc.description.references | Izumi Y, Imaida M, Fukawa H, Akabori S (1963) Bull Chem Soc Jap 1:21 | es_ES |
dc.description.references | Adkins H, Billica HR (1948) J Am Chem Soc 70:3121–3125 | es_ES |
dc.description.references | Antons S (1998) Process for the preparation of optically active alcohols, US Patent 5731479, to Bayer Aktiengesellschaf | es_ES |
dc.description.references | Antons S, Beitzke B (1996) Process for preparing optically active amino alcohols, US Patent 5536879, to Bayer Aktiengesellschaft | es_ES |
dc.description.references | Bhandare SG, Vaidya PD (2017) Ind Eng Chem Res 56:3797–3803 | es_ES |
dc.description.references | Zhang W, Rao MY, Cheng ZJ, Zhu XY, Gao K, Yang J, Yang B, Liao XL (2015) Chem Pap 69:716–721 | es_ES |
dc.description.references | Le Nôtre J, Scott EL, Franssen MCR, Sanders JPM (2011) Green Chem 13:807–809 | es_ES |
dc.description.references | Beerthuis R, Rothenberg G, Shiju NR (2015) Green Chem 17:1341–1361 | es_ES |
dc.description.references | Xu X, But A, Wever R, Hollmann F (2019) ChemCatChem 1:1–5 | es_ES |
dc.description.references | De Schouwer F, Claes L, Claes N, Bals S, Degrève J, De Vos DE (2015) Green Chem 17:2263–2270 | es_ES |
dc.description.references | Suganuma S, Otani A, Joka S, Asako H, Takagi R, Tsuji E, Katada N (2019) Chemsuschem 12:1381–1389 | es_ES |
dc.description.references | Trant AG, Baddeley CJ (2011) J Phys Chem C 115:1025–1030 | es_ES |
dc.description.references | Yue YN, Meng WJ, Liu L, Hu QL, Wang H, Lu JX (2018) Electrochim Acta 260:606–613 | es_ES |
dc.description.references | Shih I-L, Van Y-T (2001) Biores Technol 79:207 | es_ES |
dc.description.references | Richard A, Margaritis A (2001) Crit Rev Biotechnol 21:219 | es_ES |
dc.description.references | Ajayeoba TA, Dula S, Ijabadeniyi OA (2019) Front Microbiol. https://doi.org/10.3389/fmicb.2019.00771 | es_ES |
dc.description.references | Müslüm Altun (2019) Trak Univ J Nat Sci 20:27–34 | es_ES |
dc.description.references | Cao M, Feng J, Sirisansaneeyakul S, Song C, Chisti Y (2018) Biotechnol Adv 36:1424–1433 | es_ES |
dc.description.references | Okabe M, Lies D, Kanamasa S (2009) Appl Microbiol Biotechnol 84:597 | es_ES |
dc.description.references | Gowda RR, Chen EYX (2019) Chemsuschem 12:973–977 | es_ES |
dc.description.references | Cunha da Cruz J (2018) Machado de Castro a, Camporese Sérvulo ef, 3 Biotech 8:1–15 | es_ES |
dc.description.references | Nemestóthy N, Komáromy P, Bakonyi P, Tóth AL, Tóth G, Gubicza L, Bélafi-Bakó K (2019) Waste Biomass Valorization. https://doi.org/10.1007/s12649-019-00729-3 | es_ES |
dc.description.references | Regestein L, Klement T, Grande P, Kreyenschulte D, Heyman B, Maßmann T, Eggert A, Sengpiel R, Wang Y, Wierckx N et al (2018) Biotechnol Biofuels 11:1–11 | es_ES |
dc.description.references | Steiger MG, Wierckx N, Blank LM, Mattanovich D, Sauer M (2016) Ind Biotechnol Prod Process 5:453–472 | es_ES |
dc.description.references | Yang J, Xu H, Jiang J, Zhang N, Xie J, Wei M (2019) J Zhao 4:135–142 | es_ES |
dc.description.references | Yahiro K, Takahama T, Park Y, Okabe M (1995) J Ferm Bioeng 79:506 | es_ES |
dc.description.references | Hevekerl A, Kuenz A, Vorlop KD (2014) Appl Microbiol Biotechnol 98:10005–10012 | es_ES |
dc.description.references | Liu X, Wang X, Liu Q, Xu G, Li X, Mu X (2016) Catal Today 274:88–93 | es_ES |
dc.description.references | Park DS, Abdelrahman OA, Vinter KP, Howe PM, Bond JQ, Reineke TM, Zhang K, Dauenhauer PJ, Sustain ACS (2018) Chem Eng 6:9394–9402 | es_ES |
dc.description.references | Spanjers CS, Schneiderman DK, Wang JZ, Wang J, Hillmyer MA, Zhang K, Dauenhauer PJ (2016) ChemCatChem 8:3031–3035 | es_ES |
dc.description.references | Abdelrahman OA, Park DS, Vinter KP, Spanjers CS, Ren L, Cho HJ, Zhang K, Fan W, Tsapatsis M, Dauenhauer PJ (2017) ACS Catal 7:1428–1431 | es_ES |
dc.description.references | Morais ARC, Dworakowska S, Reis A, Gouveia L, Matos CT, Bogdał D, Bogel-ŁUkasik R (2015) Catal Today 239:38–43 | es_ES |
dc.description.references | Veerabagu U, Jaikumar G, Fushen L (2019) J Polym Environ 27:2756–2768 | es_ES |
dc.description.references | Huang Q, Yu W, Lu F, Lu R, Si X, Gao J, Xu J (2019) Catal Today 319:197–205 | es_ES |
dc.description.references | Louven Y, Schute K, Palkovits R (2019) ChemCatChem 11:439–442 | es_ES |
dc.description.references | Haus MO, Louven Y, Palkovits R (2019) Green Chem 21:6268–6276 | es_ES |
dc.description.references | Chedid R, Melder J, Dostalek R, Pastre J, Tan A (2014) Process for preparing pyrrolidine, US Patent 0018547 A1, to BASF SE | es_ES |
dc.description.references | Hass H, Jasne S, Moreau R (1984) Itaconamide Compounds and Methods of Preparation, US Patent 4480125, to Polaroid Corporation | es_ES |
dc.description.references | Bohre A, Hočevar B, Grilc M, Likozar B (2019) Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.117889 | es_ES |
dc.description.references | Pirmoradi M, Kastner JR, Sustain ACS (2017) Chem Eng 5:1517–1527 | es_ES |
dc.description.references | Di X, Zhang Y, Fu J, Yu Q, Wang Z, Yuan Z, Sustain ACS (2020) Chem Eng 8:1805–1812 | es_ES |
dc.description.references | Pérocheau Arnaud S, Andreou E, Pereira Köster LVG, Robert T, Sustain ACS (2019) Chem Eng 8(3):1583–1590 | es_ES |
dc.description.references | Wang XC, Song YJ, Huang L, Wang H, Huang CP, Li CQ (2019) Catal. Sci Technol 9:1669–1679 | es_ES |
dc.description.references | Xu J, Cao F, Li T, Zhang S, Gao C, Wu Y (2016) J Surf Deterg 19:373–379 | es_ES |
dc.description.references | Sakthivel M, Franklin DS, Sudarsan S, Chitra G, Sridharan TB, Guhanathan S, Appl SN (2019) Sci 1:146. https://doi.org/10.1007/s42452-018-0156-y | es_ES |
dc.description.references | Teleky BE, Vodnar DC (2019) Polymers (Basel) 11(6):1035. https://doi.org/10.3390/polym11061035 | es_ES |
dc.description.references | Trotta JT, Watts A, Wong AR, Lapointe AM, Hillmyer MA, Fors BP, Sustain ACS (2019) Chem Eng 7:2691–2701 | es_ES |
dc.description.references | Giacobazzi G, Gioia C, Colonna M, Celli A, Sustain ACS (2019) Chem Eng 7:5553–5559 | es_ES |
dc.description.references | Szöllosi G, Balazsik K, Bartok M (2007) Appl Catal A 319:193 | es_ES |
dc.description.references | Sahoo S, Kumar P, Lefebvre F, Halligudi SB (2008) J. Catal. 91:5 | es_ES |
dc.description.references | Guo R, Wang Y, Shan X, Han Y, Cao Z, Zheng H (2019) Carbon N Y 152:671–679 | es_ES |
dc.description.references | Quadri SAI, Das TC, Malik MS, Seddigi ZS, Farooqui M (2016) ChemistrySelect 1:4602–4606 | es_ES |
dc.description.references | Kasar SB, Thopate SR (2019) Curr Organocatal 6:231–237 | es_ES |
dc.description.references | Timokhin BV, Baransky VA, Eliseeva GD (1999) Russ Chem Rev 68:73–84 | es_ES |
dc.description.references | Rangarajan S, Bhan A, Daoutidis P (2010) Ind Eng Chem Res 49:10459–10470 | es_ES |
dc.description.references | Shilling WL (1996) US Patent 32355562 | es_ES |
dc.description.references | Fitspatrick SW (1990) Lignocellulose degradation to furfural and levulinic acid, US Patent 4897497, to Biofine Incorporated | es_ES |
dc.description.references | Fitzpatrick SW (2002) Final technical report commercialization of the biofine technology for levulinic acid production from paper sludge, BioMetics Inc., Report No DOE/CE/41178, (http://www.Osti.Gov/Bridge), US Department Of Energy: Washington DC | es_ES |
dc.description.references | Manzer LE (2004) Biomass derivatives: a sustainable source of chemicals; National Science Foundation Workshop: Catalysis for Renewables Conversion, National Science Foundation: Washington, DC | es_ES |
dc.description.references | Schraufnagel RA, Rase HF (1975) Ind Eng Chem Prod Res Dev 14:40 | es_ES |
dc.description.references | Elliott DC, Frye JG (1999), US Patent 5883266, to Battelle Memorial Institute | es_ES |
dc.description.references | Luque R, Clark JH, Yoshida K (2009) Chem Commun 1:5305 | es_ES |
dc.description.references | Luque R, Clark JH (2010) Catal Commun 1:928 | es_ES |
dc.description.references | Manzer LE (2002) WO Patent 2002074760. | es_ES |
dc.description.references | Manzer LE (2003) US Patent 20030055270. | es_ES |
dc.description.references | Dunlop AP, Madden J (1957) US Patent 2786852 | es_ES |
dc.description.references | Manzer LE, Hutchenson KW (2003) US Patent 2004254384 | es_ES |
dc.description.references | Kopetzki D, Antonietti M (2010) Green Chem 12:656 | es_ES |
dc.description.references | Deng L, Li J, Lai D-M, Fu Y, Guo Q-X (2009) Angew Chem Int Ed 48:6529 | es_ES |
dc.description.references | Puts RD, Brandenburg C, Tarburton KR (2002) US Patent 2002143195 | es_ES |
dc.description.references | Coulson DR, Manzen LE, Herron N (2001) US Patent 6313318 | es_ES |
dc.description.references | Manzer LE (2004) Appl Catal A 272:249 | es_ES |
dc.description.references | Corma A, Iborra S (2007) Chem Rev 107:2411 | es_ES |
dc.description.references | Lourvanij K, Rorrer GL (1994) Appl Catal A 109:147 | es_ES |
dc.description.references | Manzer LE (2005) US Patent 0210738 A1, to DuPont | es_ES |
dc.description.references | Manzer LE (2005) US Patent 0171374 | es_ES |
dc.description.references | Rae A, Hodgson W (2003) WO Patent 002696 A1, to AAE Technologies International PLC | es_ES |
dc.description.references | Crook LR, Jansen BA, Spencer KE, Watson DH (1996) GB Patent 1036694 | es_ES |
dc.description.references | Manzer LE, Herkes FE (2004) US Patent 2004192933 | es_ES |
dc.description.references | Dunlop AP, Smith S (1955) US Patent 6743819 | es_ES |
dc.description.references | Sonoda N, Tsutsumi S (1963) Bull Chem Soc Jpn 36:1311 | es_ES |
dc.description.references | Pileidis FD, Titirici M-M (2016) Chemsuschem 9:562–582 | es_ES |
dc.description.references | Hayes DJ (2009) Catal. Today 1:145 | es_ES |
dc.description.references | Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT (2008) Top Catal 48:49130 | es_ES |
dc.description.references | Bianchi M, Menchi G, Francalanci F, Piacenti F, Matteoli U, Frediani P (1980) J Organomet Chem 1:188 | es_ES |
dc.description.references | Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J (2010) Angew Chem Int Ed 49:5510 | es_ES |
dc.description.references | Serrano-Ruiz JC, West RM, Dumesic JA (2010) Annu Rev Chem Biomol Eng 1:79 | es_ES |
dc.description.references | Simonetti DA, Dumesic JA (2009) Catal Rev 51:441 | es_ES |
dc.description.references | Serrano-Ruiz JC, Wang D (2010) Green Chem 12:574 | es_ES |
dc.description.references | Horvath IT, Mehdi H, Fabos V, Boda L (2008) Green Chem 10:238 | es_ES |
dc.description.references | West RM, Liu ZL, Peter M (2008) Chemsuschem 1:417 | es_ES |
dc.description.references | Kottke RH (1998) Kirk-Othmer Encyclopedia of Chemical Technology. In: Kroschwitz J, Howe-Grant M (eds) Organic reaction. Wiley, New York | es_ES |
dc.description.references | Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C (2018) Front Chem 6:146 | es_ES |
dc.description.references | Yamaguchi A, Mimura N, Shirai M, Sato O (2019) Acs Sustain Chem Eng 7:10445–10451 | es_ES |
dc.description.references | Chheda B (2016) US Patent 025673 A1 | es_ES |
dc.description.references | Yu SJ, Park N, Park ED, Yoo MJ (2015) J Ind Eng Chem 21:350–355 | es_ES |
dc.description.references | Chen H, Qin L, Yu B (2015) Biomass Bioenerg 73:77–83 | es_ES |
dc.description.references | Li X, Yang J, Xu R, Lu L, Kong F, Liang M, Jiang L, Nie S, Si C (2019) Ind Crops Prod 135:196–205 | es_ES |
dc.description.references | Bernal HG, Galletti AMR, Garbarino G, Busca G, Finocchio E (2015) Appl Catal A Gen 502:388–398 | es_ES |
dc.description.references | Doiseau A-C, Rataboul F, Burel L, Essayem N (2014) Catal Today 226:176–184 | es_ES |
dc.description.references | Zhang L, Yu H, Wang P (2013) Bioresour Technol 136:515–521 | es_ES |
dc.description.references | Gómez Millán G, Phiri J, Mäkelä M, Maloney T, Balu AM, Pineda A, Llorca J, Sixta H (2019) Appl Catal A Gen 585:117180 | es_ES |
dc.description.references | McEvoy HS, Shalit H (1964) US Patent 3374184 | es_ES |
dc.description.references | Zheng H-Y, Zhu Y-L, Teng B-T, Bai Z-Q, Zhang C-H, Xiang H-W, Li Y-W (2006) J Mol Catal A Chem 246:18–23 | es_ES |
dc.description.references | Rao RS, Baker RTK, Vannice MA (1999) Catal Lett 60:51–57 | es_ES |
dc.description.references | Nagaraja BM, Siva Kumar V, Shasikala V, Padmasri AH, Sreedhar B, David Raju B, Rama Rao KS (2003) Catal Commun 4:287–293 | es_ES |
dc.description.references | Hao X-Y, Zhou W, Wang J-W, Zhang Y-Q, Liu S (2005) Chem. Lett. 34:1000–1001 | es_ES |
dc.description.references | Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Catal Commun 6:633–637 | es_ES |
dc.description.references | Kijeński J, Winiarek P, Paryjczak T, Lewicki A, Mikołajska A (2002) Appl Catal A Gen 233:171–182 | es_ES |
dc.description.references | Frainier LJ, FinebergH (1980) DE Patent 3007139 | es_ES |
dc.description.references | Hinnekens H (1984) DE Patent, 3425758 | es_ES |
dc.description.references | De Thomas WR, Hort EV (1978) US Patent 4153578 | es_ES |
dc.description.references | Baijun L, Lianhai L, Bingchun W, Tianxi C (1998) Katsuyoshi Iwatani. Appl Catal A Gen 171:117–122 | es_ES |
dc.description.references | Li H, Luo H, Zhuang L, Dai W, Qiao M (2003) J Mol Catal A Chem 203:267–275 | es_ES |
dc.description.references | Chen X, Li H, Luo H, Qiao M (2002) Appl Catal A Gen 233:13–20 | es_ES |
dc.description.references | Corma A, Domine ME, Valencia S (2014) WO Patent 20144064318 | es_ES |
dc.description.references | Mori S, Hamana R, Aoki T, Ayusawa T (1984) JP Patent 61134384 | es_ES |
dc.description.references | Ayusawa T, Mori S, Aoki T, Hamana R (1984) JP Patent 60146885 | es_ES |
dc.description.references | Wilson WC (1932) Org Synth | es_ES |
dc.description.references | Franckland FWAFP (1936) J Chem Soc 13:265 | es_ES |
dc.description.references | Isenhour LL (1936) US Patent 2041184 | es_ES |
dc.description.references | Dunlop AP (1946) US Patent 2407866 | es_ES |
dc.description.references | Verdeguer P, Merat N, Rigal L, Gaset A (1994) J Chem Technol Biotechnol 61:97–102 | es_ES |
dc.description.references | Verdeguer P, Merat N, Gaset A (1994) Appl Catal A Gen 112:1–11 | es_ES |
dc.description.references | Lecomte J, Finiels A, Geneste P, Moreau C (1998) Appl Catal A Gen 168:235–241 | es_ES |
dc.description.references | Boulet JSO, Emo R, Faugeras P, Jobelin I, Laport F, Lecomte J, Moreau C, Roux MC, Roux G, Simminger J (1995) FR Patent 9513829 | es_ES |
dc.description.references | Ventura M, Aresta M, Dibenedetto A (2016) Chemsuschem 9:1096–1100 | es_ES |
dc.description.references | Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F, Dibenedetto A (2018) Chemsuschem 11:1305–1315 | es_ES |
dc.description.references | Cottier L, Descotes G, Lewkowski J (1994) Polish J Chem 1:68 | es_ES |
dc.description.references | Morikawa S, Teratake S (1977) JP Patent 54009260 | es_ES |
dc.description.references | Sheldon RA (1991) In: Guisnet M, Barrault J, Bouchoule C, Duprez D, Pérot G, Maurel R, Montassier R (eds), Heterog. Catal. Fine Chem. II Elsevier, New York, pp 33–54 | es_ES |
dc.description.references | Grushin V, Herron N (2002) Patent, 2003024947 | es_ES |
dc.description.references | Durand G, Faugeras P, Laporte F, Moreau C, Neau MC, Roux G, Tichit D, Toutremepuich C (1995) WO Patent 9617836 | es_ES |
dc.description.references | Moreau C, Durand R, Pourcheron C, Tichit D (1997) In: Blaser HU, Baiker A, Prins C (eds), Heterog. Catal. Fine Chem. IV, Elsevier, New York, pp 399–406 | es_ES |
dc.description.references | Vinke P, de Wit D, De Goede TJW (1992) New Developments In Selective Oxidation By Heterogeneous Catalysis. Elsevier, Amsterdam | es_ES |
dc.description.references | Verdeguer P, Merat N, Gaset A (1993) J Mol Catal 85:327–344 | es_ES |
dc.description.references | Carlini C, Patrono P, Galletti AMR, Sbrana G, Zima V (2005) Appl Catal A Gen 289:197–204 | es_ES |
dc.description.references | Faury A, Gaset A (1981) Inf Chim | es_ES |
dc.description.references | Smirnov VA, Kulnevich VG, Soltovets GN, Semchemko DP (1974) US Patent 3847952 | es_ES |
dc.description.references | Moreau C, Belgacem MN, Gandini A (2004) Top Catal 27:11–30 | es_ES |
dc.description.references | Ventura M, Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A (2018) Green Chem 20:3921–3926 | es_ES |
dc.description.references | Trivedi J, Bhonsle AK, Atray N (2020) In: Kumar RP, Gnansounou E, Raman JK, Baskar B (eds), Academic Press, London, pp 427–448 | es_ES |
dc.description.references | Si Z, Zhang X, Zuo M, Wang T, Sun Y, Tang X, Zeng X, Lin L (2020) Korean J Chem Eng 37:224–230 | es_ES |
dc.description.references | Yuan H, Liu H, Du J, Liu K, Wang T, Liu L (2020) Appl Microbiol Biotechnol 104:527–543 | es_ES |
dc.description.references | Ventura M, Dibenedetto A, Aresta M (2018) Inorg Chim Acta 470:11–21 | es_ES |
dc.description.references | Ribeiro ML, Schuchardt U (2003) Catal Commun 4:83–86 | es_ES |
dc.description.references | Bello S, Méndez-Trelles P, Rodil E, Feijoo G, Moreira MT (2020) Sep Purif Technol 233:116056 | es_ES |
dc.description.references | Lisuzzo L, Cavallaro G, Milioto S, Lazzara G (2020) Appl Clay Sci 185:105416 | es_ES |
dc.description.references | Tharani D, Ananthasubramanian M (2020), In Alam MA, Xu J-L, Wang Z (eds), Springer, Singapore, pp 373–396 | es_ES |
dc.description.references | Pavlovskay NE, Gorkova IV, Gagarina IN, Gavrilova AY, Conf IOP (2020) Ser Earth Environ Sci 422:12120 | es_ES |
dc.description.references | Silva SS, Felipe MG, Mancilha IM (1998) Appl Biochem Biotechnol 1:70–72 | es_ES |
dc.description.references | Delgado Arcaño Y, Valmaña García OD, Mandelli D, Carvalho WA, Magalhães Pontes LA (2020) Catal Today 344:2–14 | es_ES |
dc.description.references | Zhang X, Wilson K, Lee AF (2016) Chem Rev 116:12328–12368 | es_ES |
dc.description.references | VenkateswarRao L, Goli JK, Gentela J, Koti S (2016) Bioresour Technol 213:299–310 | es_ES |
dc.description.references | Sato O, Mimura N, Masuda Y, Shirai M, Yamaguchi A (2019) J Supercrit Fluids 144:14–18 | es_ES |
dc.description.references | Hilpmann G, Steudler S, Ayubi MM, Pospiech A, Walther T, Bley T, Lange R (2019) Catal Lett 149:69–76 | es_ES |
dc.description.references | Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Biotechnol Biofuels 1:16 | es_ES |
dc.description.references | Verduyn C, Jzn JF, van Dijken JP, Scheffers WA, Microbiol FEMS (1985) Lett 30:313–317 | es_ES |
dc.description.references | Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee S-M (2020) Biotechnol Biofuels 13:12 | es_ES |
dc.description.references | Yin B, Jin X, Zhang G, Yan H, Zhang W, Liu X, Liu M, Yang C, Shen J, Sustain ACS (2020) Chem Eng 8:5305–5316 | es_ES |
dc.description.references | Murzin DY, Garcia S, Russo V, Kilpiö T, Godina LI, Tokarev AV, Kirilin AV, Simakova IL, Poulston S, Sladkovskiy DA et al (2017) Ind Eng Chem Res 56:13240–13253 | es_ES |
dc.description.references | Wang S-F, Fan M-H, He Y-T, Li Q-X (2019) Chinese J Chem Phys 32:513–520 | es_ES |
dc.description.references | Moreno J, Iglesias J, Blanco J, Montero M, Morales G, Melero JA (2020) J Clean Prod 250:119568 | es_ES |
dc.description.references | Zhang G, Chen T, Zhang Y, Liu T, Wang G (2020) Catal Lett. https://doi.org/10.1007/s10562-020-03129-8 | es_ES |
dc.description.references | Guleria A, Kumari G, Saravanamurugan S (2020) In: Saravanamurugan S, Pandey A, Li H, Riisager ABTR (eds), Biomass, Biofuels, Biochemicals, Elsevier, New York, pp 433–457 | es_ES |
dc.description.references | Yuan D, Li L, Li F, Wang Y, Wang F, Zhao N, Xiao F (2019) Chemsuschem 12:4986–4995 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |