Mostrar el registro sencillo del ítem
dc.contributor.author | Guijarro, Francisco | es_ES |
dc.date.accessioned | 2022-07-20T18:05:52Z | |
dc.date.available | 2022-07-20T18:05:52Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/184564 | |
dc.description.abstract | [EN] This paper introduces a new approach to the sales comparison model for the valuation of real estate that can objectively estimate the coefficients associated with the explanatory price variables. The coefficients of the price adjustment process are estimated from the formulation of a quadratic programming model similar to the mean-variance model in the portfolio selection problem and are shown to be independent of the property to be valued. It is also shown that the sales comparison model should minimize the variance of the adjusted prices, and not their coefficient of variation as indicated by some national and international valuation regulations. The paper concludes with a case study on the city of Medellin, Colombia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Towarzystwo Naukowe Nieruchomosci | es_ES |
dc.relation.ispartof | Real Estate Management and Valuation | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Pricing | es_ES |
dc.subject | Economic valuation | es_ES |
dc.subject | Multiple linear regression model | es_ES |
dc.subject | Quadratic programming | es_ES |
dc.subject | Objective weights | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | A mean-variance optimization approach for residential real estate valuation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2478/remav-2021-0018 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials | es_ES |
dc.description.bibliographicCitation | Guijarro, F. (2021). A mean-variance optimization approach for residential real estate valuation. Real Estate Management and Valuation. 29(3):13-28. https://doi.org/10.2478/remav-2021-0018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.2478/remav-2021-0018 | es_ES |
dc.description.upvformatpinicio | 13 | es_ES |
dc.description.upvformatpfin | 28 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2300-5289 | es_ES |
dc.relation.pasarela | S\421228 | es_ES |
dc.description.references | Ahn, J. J., Byun, H. B., Oh, K. Y., & Kim, Y. K. (2012). Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting. Expert Systems with Applications, 39, 8369–8379. https://doi.org/10.1016/j.eswa.2012.01.18310.1016/j.eswa.2012.01.183 | es_ES |
dc.description.references | Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of random forest for valuation and a cart-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772–1778. https://doi.org/10.1016/j.eswa.2011.08.07710.1016/j.eswa.2011.08.077 | es_ES |
dc.description.references | Appraisal Institute. (1996). The appraisal of real estate. Appraisal Institute. | es_ES |
dc.description.references | Arribas, I., García, F., Guijarro, F., Oliver, J., & Tamosiuniene, R. (2016). Mass appraisal of residential real estate using multilevel modelling. International Journal of Strategic Property Management, 20(1), 77–87. https://doi.org/10.3846/1648715X.2015.113470210.3846/1648715X.2015.1134702 | es_ES |
dc.description.references | Aznar, J., Ferrís-Oñate, J., & Guijarro, F. (2010). An ANP framework for property pricing combining quantitative and qualitative attributes. The Journal of the Operational Research Society, 61(5), 740–755. https://doi.org/10.1057/jors.2009.3110.1057/jors.2009.31 | es_ES |
dc.description.references | Aznar, J., & Guijarro, F. (2007). Estimating regression parameters with imprecise input data in an appraisal context. European Journal of Operational Research, 176(3), 1896–1907. https://doi.org/10.1016/j.ejor.2005.10.02910.1016/j.ejor.2005.10.029 | es_ES |
dc.description.references | Aznar, J., Guijarro, F., & Moreno-Jiménez, J. M. (2011). Mixed valuation methods: A combined AHPGP procedure for individual and group multicriteria agricultural valuation. Annals of Operations Research, 190(1), 221–238. https://doi.org/10.1007/s10479-009-0527-210.1007/s10479-009-0527-2 | es_ES |
dc.description.references | Baldominos, A., Blanco, I., Moreno, A. J., Iturrarte, R., Bernárdez, Ó., & Afonso, C. (2018). Identifying real estate opportunities using machine learning. Applied Sciences (Basel, Switzerland), 8(11), 2321. https://doi.org/10.3390/app811232110.3390/app8112321 | es_ES |
dc.description.references | Brown, K., & Uyar, B. (2004). A hierarchical linear model approach for assessing the effects of house and neighborhood characteristics on housing prices. Journal of Real Estate Practice and Education, 7(1), 15–24. https://doi.org/10.1080/10835547.2004.1209160310.1080/10835547.2004.12091603 | es_ES |
dc.description.references | Cupal, M., Sedlacik, M., & Michalek, J. (2019). The assessment of a building’s insurable value using multivariate statistics: The case of the Czech Republic. Real Estate Management and Valuation, 27(3), 81–96. https://doi.org/10.2478/remav-2019-002710.2478/remav-2019-0027 | es_ES |
dc.description.references | d’Amato, M. (2002). Appraising property with rough set theory. Journal of Property Investment & Finance, 20(4), 406–418. https://doi.org/10.1108/1463578021043507410.1108/14635780210435074 | es_ES |
dc.description.references | d’Amato, M. (2004). A comparison between MRA and rough set theory for mass appraisal. A case in Bari. International Journal of Strategic Property Management, 8(4), 205–217. https://doi.org/10.3846/1648715X.2004.963751810.3846/1648715X.2004.9637518 | es_ES |
dc.description.references | d’Amato, M. (2007). Comparing rough set theory with multiple regression analysis as automated valuation methodologies. International Real Estate Review, 10(2), 42–65. | es_ES |
dc.description.references | Dmytrow, K., & Gnat, S. (2019). Application of AHP method in assessment of the influence of attributes on value in the process of real estate valuation. Real Estate Management and Valuation, 27(4), 15–26. https://doi.org/10.2478/remav-2019-003210.2478/remav-2019-0032 | es_ES |
dc.description.references | Ebru, C., & Eban, A. (2011). Determinants of house prices in Istanbul: A quantile regression approach. Quality & Quantity, 45(2), 305–317. https://doi.org/10.1007/s11135-009-9296-x10.1007/s11135-009-9296-x | es_ES |
dc.description.references | Eckert, J. K., Gloudemans, R. J., & Almy, R. R. (1990). Property appraisal and assessment administration. International Association of Assessing Officers. | es_ES |
dc.description.references | Fan, G. Z., Ong, S. E., & Koh, H. C. (2006). Determinants of house price: A decision tree approach. Urban Studies (Edinburgh, Scotland), 43(12), 2301–2315. https://doi.org/10.1080/0042098060099092810.1080/00420980600990928 | es_ES |
dc.description.references | García, N., Gámez, M., & Alfaro, E. (2008). ANN+GIS: An automated system for property valuation. Neurocomputing, 71(4-6), 733–742. https://doi.org/10.1016/j.neucom.2007.07.03110.1016/j.neucom.2007.07.031 | es_ES |
dc.description.references | Gu, J., Zhu, M., & Jiang, L. (2011). Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, 38(4), 3383–3386. https://doi.org/10.1016/j.eswa.2010.08.12310.1016/j.eswa.2010.08.123 | es_ES |
dc.description.references | Guijarro, F. (2019). Assessing the impact of road traffic externalities on residential price values: A case study in Madrid, Spain. International Journal of Environmental Research and Public Health, 16(24), 5149. https://doi.org/10.3390/ijerph16245149 PMID:3186105510.3390/ijerph16245149 | es_ES |
dc.description.references | Hausler, J., Ruscheinsky, J., & Lang, M. (2018). News-based sentiment analysis in real estate: A machine learning approach. Journal of Property Research, 35(4), 344–371. https://doi.org/10.1080/09599916.2018.155192310.1080/09599916.2018.1551923 | es_ES |
dc.description.references | Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., & Cai, Z. (2019). Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy, 82, 657–673. https://doi.org/10.1016/j.landusepol.2018.12.03010.1016/j.landusepol.2018.12.030 | es_ES |
dc.description.references | Guo, J., Xu, S., & Bi, Z. (2013). An integrated cost-based approach for real estate appraisals. Information Technology and Management, 15(2), 131–139. https://doi.org/10.1007/s10799-012-0152-710.1007/s10799-012-0152-7 | es_ES |
dc.description.references | IAAO. (2003). Standard on automated valuation models (AVMs). International Association of Assessing Officers. | es_ES |
dc.description.references | Kane, M. S., Linne, M. R., & Johnson, J. A. (2004). Practical Applications in Appraisal Valuation Modeling: Statistical Methods for Real Estate Practitioners. Appraisal Institute. | es_ES |
dc.description.references | Kontrimas, V., & Verikas, A. (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11(1), 443–448. https://doi.org/10.1016/j.asoc.2009.12.00310.1016/j.asoc.2009.12.003 | es_ES |
dc.description.references | Lins, M. P. E., Novaes, L. F. L., & Legey, L. F. L. (2005). Real estate appraisal: A double perspective data envelopment analysis approach. Annals of Operations Research, 138(1), 79–96. https://doi.org/10.1007/s10479-005-2446-110.1007/s10479-005-2446-1 | es_ES |
dc.description.references | Liu, F., Liu, D., Malekian, R., Li, Z., & Wang, D. (2017). A measurement model for real estate bubble size based on the panel data analysis: An empirical case study. PLoS One, 12(3), e0173287. https://doi.org/10.1371/journal.pone.0173287 PMID:2827314110.1371/journal.pone.0173287 | es_ES |
dc.description.references | Liu, L., & Wu, L. (2020). Predicting housing prices in China based on modified Holt’s exponential smoothing incorporating whale optimization algorithm. Socio-Economic Planning Sciences, 72, 100916. Advance online publication. https://doi.org/10.1016/j.seps.2020.10091610.1016/j.seps.2020.100916 | es_ES |
dc.description.references | Liu, R., & Liu, L. (2019). Predicting housing price in China based on long short-term memory incorporating modified genetic algorithm. Soft Computing, 23(22), 11829–11838. https://doi.org/10.1007/s00500-018-03739-w10.1007/s00500-018-03739-w | es_ES |
dc.description.references | Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x10.1111/j.1540-6261.1952.tb01525.x | es_ES |
dc.description.references | Narula, S. C., Wellington, J. F., & Lewis, S. A. (2012). Valuating residential real estate using parametric programming. European Journal of Operational Research, 217(1), 120–128. https://doi.org/10.1016/j.ejor.2011.08.01410.1016/j.ejor.2011.08.014 | es_ES |
dc.description.references | Park, B., & Bae, J. K. (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Systems with Applications, 42(6), 2928–2934. https://doi.org/10.1016/j.eswa.2014.11.040; https://doi.org/10.1016/j.eswa.2015.03.005 | es_ES |
dc.description.references | Pérez-Rave, J. I., Correa-Morales, J. C., & González-Echavarría, F. (2019). A machine learning approach to big data regression analysis of real estate prices for inferential and predictive purposes. Journal of Property Research, 36(1), 59–96. https://doi.org/10.1080/09599916.2019.158748910.1080/09599916.2019.1587489 | es_ES |
dc.description.references | Plakandaras, V., Gupta, R., Gogas, P., & Papadimitriou, T. (2015). Forecasting the US real house price index. Economic Modelling, 45, 259–267. https://doi.org/10.1016/j.econmod.2014.10.05010.1016/j.econmod.2014.10.050 | es_ES |
dc.description.references | Raslanas, S., Zavadskas, E. K., Kaklauskas, A., & Zabulenas, A. R. (2010). Land value tax in the context of sustainable urban development and assessment. Part II - Analysis of land valuation techniques: The case of Vilnius. International Journal of Strategic Property Management, 14(2), 173–190. https://doi.org/10.3846/ijspm.2010.1310.3846/ijspm.2010.13 | es_ES |
dc.description.references | Selim, H. (2009). Determinants of house prices in turkey: Hedonic regression versus artificial neural network. Expert Systems with Applications, 36(2), 2843–2852. https://doi.org/10.1016/j.eswa.2008.01.04410.1016/j.eswa.2008.01.044 | es_ES |
dc.description.references | Valier, A. (2020). Who performs better? AVMs vs hedonic models. Journal of Property Investment & Finance, 38(3), 213–225. https://doi.org/10.1108/JPIF-12-2019-015710.1108/JPIF-12-2019-0157 | es_ES |
dc.description.references | Wiltshaw, D. (1995). A comment on methodology and valuation. Journal of Property Research, 12(2), 157–161. https://doi.org/10.1080/0959991950872413910.1080/09599919508724139 | es_ES |
dc.description.references | Wu, C., Ye, X., Ren, F., Wan, Y., Ning, P., & Du, Q. (2016). Spatial and social media data analytics of housing prices in Shenzhen, China. PLoS One, 11(10), e0164553. https://doi.org/10.1371/journal.pone.0164553 PMID:2778364510.1371/journal.pone.0164553 | es_ES |