Mostrar el registro sencillo del ítem
dc.contributor.author | Uban, Ana-Sabina | es_ES |
dc.contributor.author | Chulvi-Ferriols, María Alberta | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2022-07-22T18:06:29Z | |
dc.date.available | 2022-07-22T18:06:29Z | |
dc.date.issued | 2021-11 | es_ES |
dc.identifier.issn | 0167-739X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/184698 | |
dc.description.abstract | [EN] Mental disorders can severely affect quality of life, constitute a major predictive factor of suicide, and are usually underdiagnosed and undertreated. Early detection of signs of mental health problems is particularly important, since unattended, they can be life-threatening. This is why a deep understanding of the complex manifestations of mental disorder development is important. We present a study of mental disorders in social media, from different perspectives. We are interested in understanding whether monitoring language in social media could help with early detection of mental disorders, using computational methods. We developed deep learning models to learn linguistic markers of disorders, at different levels of the language (content, style, emotions), and further try to interpret the behavior of our models for a deeper understanding of mental disorder signs. We complement our prediction models with computational analyses grounded in theories from psychology related to cognitive styles and emotions, in order to understand to what extent it is possible to connect cognitive styles with the communication of emotions over time. The final goal is to distinguish between users diagnosed with a mental disorder and healthy users, in order to assist clinicians in diagnosing patients. We consider three different mental disorders, which we analyze separately and comparatively: depression, anorexia, and self-harm tendencies. | es_ES |
dc.description.sponsorship | The authors thank the EU-FEDER Comunitat Valenciana 2014- 2020 grant IDIFEDER/2018/025. The work of Paolo Rosso was in the framework of the research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Future Generation Computer Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mental health disorders | es_ES |
dc.subject | Early risk prediction | es_ES |
dc.subject | Emotions | es_ES |
dc.subject | Cognitive styles | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Social media | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | An emotion and cognitive based analysis of mental health disorders from social media data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.future.2021.05.032 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F121//DEEP LEARNING FOR ADAPTATIVE AND MULTIMODAL INTERACTION IN PATTERN RECOGNITION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Uban, A.; Chulvi-Ferriols, MA.; Rosso, P. (2021). An emotion and cognitive based analysis of mental health disorders from social media data. Future Generation Computer Systems. 124:480-494. https://doi.org/10.1016/j.future.2021.05.032 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.future.2021.05.032 | es_ES |
dc.description.upvformatpinicio | 480 | es_ES |
dc.description.upvformatpfin | 494 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 124 | es_ES |
dc.relation.pasarela | S\460635 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |