- -

Selection for environmental variance of litter size in rabbits involves genes in pathways controlling animal resilience

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selection for environmental variance of litter size in rabbits involves genes in pathways controlling animal resilience

Mostrar el registro completo del ítem

Casto-Rebollo, C.; Argente, MJ.; García, ML.; Blasco Mateu, A.; Ibáñez-Escriche, N. (2021). Selection for environmental variance of litter size in rabbits involves genes in pathways controlling animal resilience. Genetics Selection Evolution. 53(1). https://doi.org/10.1186/s12711-021-00653-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184701

Ficheros en el ítem

Metadatos del ítem

Título: Selection for environmental variance of litter size in rabbits involves genes in pathways controlling animal resilience
Autor: Casto-Rebollo, Cristina Argente, María José García, María Luz Blasco Mateu, Agustín Ibáñez-Escriche, Noelia
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Background Environmental variance (V-E) is partially under genetic control, which means that the V-E of individuals that share the same environment can differ because they have different genotypes. Previously, a ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Genetics Selection Evolution. (issn: 0999-193X )
DOI: 10.1186/s12711-021-00653-y
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12711-021-00653-y
Coste APC: 1900
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/
info:eu-repo/grantAgreement/ISCIII//PT17%2F0019/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-2-P/ES/ESTUDIO MULTIOMICO DE LA MICROBIOTA DIGESTIVA Y SU RELACION CON LA SENSIBILIDAD AL AMBIENTE EN LINEAS DE CONEJO SELECCIONADAS POR VARIABILIDAD AMBIENTAL/
info:eu-repo/grantAgreement/MIU//FPU17%2F01196//AYUDA CONTRATO PREDOCTORAL FPU-CASTO REBOLLO/
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-2-P/ES/ANALISIS GENOMICO DE LA VARIANZA RESIDUAL DEL TAMAÑO DE CAMADA Y SU RELACION CON EL BIENESTAR ANIMAL/
[-]
Agradecimientos:
We are grateful to CEGEN-PRB3-ISCIII for their genotyping service, supported by Grant No PT17/0019 of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. Cristina Casto-Rebollo acknowledges a FPU17/01196 scholarship ...[+]
Tipo: Artículo

References

Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow: Prentice Hall; 1996.

Walsh B, Lynch M. Evolution and selection of quantitative traits. Oxford: Oxford University Press; 2018.

Formoso-Rafferty N, Cervantes I, Ibáñez-Escriche N, Gutiérrez JP. Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice. J Anim Breed Genet. 2016;133:227–37. [+]
Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow: Prentice Hall; 1996.

Walsh B, Lynch M. Evolution and selection of quantitative traits. Oxford: Oxford University Press; 2018.

Formoso-Rafferty N, Cervantes I, Ibáñez-Escriche N, Gutiérrez JP. Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice. J Anim Breed Genet. 2016;133:227–37.

Blasco A, Martínez-Álvaro M, García ML, Ibáñez-Escriche N, Argente MJ. Selection for environmental variance of litter size in rabbit. Genet Sel Evol. 2017;49:48.

Berghof TVL, Poppe M, Mulder HA. Opportunities to improve resilience in animal breeding programs. Front Genet. 2019;9:692.

Mulder HA. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front Genet. 2016;7:178.

Colditz IG, Hine BC. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci. 2016;56:1961–83.

Argente MJ, García ML, Zbyňovská K, Petruška P, Capcarová M, Blasco A. Correlated response to selection for litter size environmental variability in rabbits’ resilience. Animal. 2019;13:2348–55.

Wijga S, Bastiaansen JWM, Wall E, Strandberg E, de Haas Y, Giblin L, et al. Genomic associations with somatic cell score in first-lactation Holstein cows. J Dairy Sci. 2012;95:899–908.

Sell-Kubiak E, Duijvesteijn N, Lopes MS, Janss LLG, Knol EF, Bijma P, et al. Genome-wide association study reveals novel loci for litter size and its variability in a Large White pig population. BMC Genomics. 2015;16:1049.

Casto-Rebollo C, Argente MJ, García ML, Pena R, Ibáñez-Escriche N. Identification of functional mutations associated with environmental variance of litter size in rabbits. Genet Sel Evol. 2020;52:22.

Hill WG, Mulder HA. Genetic analysis of environmental variation. Genet Res (Camb). 2010;92:381–95.

Crouch DJM, Bodmer WF. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc Natl Acad Sci USA. 2020;117:18924–33.

Qanbari S, Simianer H. Mapping signatures of positive selection in the genome of livestock. Livest Sci. 2014;166:133–43.

González-Rodríguez A, Munilla S, Mouresan EF, Cañas-Álvarez JJ, Diaz C, Piedrafiat J, et al. On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genet Sel Evol. 2016;48:81.

Sosa-Madrid BS, Varona L, Blasco A, Hernández P, Casto-Rebollo C, Ibáñez-Escriche N. The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal. 2020;14:2225–35.

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–26.

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.

Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res (Camb). 1974;23:23–35.

Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.

Weir BS, Cockerham CC. Estimating F-Statistics for the analysis of population structure. Evolution. 1984;38:1358–70.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCF tools. Bioinformatics. 2011;27:2156–8.

Ong RTH, Teo YY. varLD: a program for quantifying variation in linkage disequilibrium patterns between populations. Bioinformatics. 2010;26:1269–70.

Elston RC. Preprocessing and quality control for whole-genome sequences from the Illumina HiSeq X platform. In: Wright MN, Gola D, Ziegler A, editors. Statistical human genetics, vol. 1666. Methods in molecular biology. New York: Humana Press; 2017. p. 629–47.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.

Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61.

Kim ES, Ros-Freixedes R, Pena RN, Baas TJ, Estany J, Rothschild MF. Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations. J Anim Sci. 2015;93:3292–302.

Lillie M, Sheng Z, Honaker CF, Dorshorst BJ, Ashwell CM, Siegel PB, et al. Genome-wide standing variation facilitates long-term response to bidirectional selection for antibody response in chickens. BMC Genomics. 2017;18:99.

Johansson AM, Pettersson ME, Siegel PB, Carlborg Ö. Genome-wide effects of long-term divergent selection. PLoS Genet. 2010;6:e1001188.

Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010;20:R208–15.

Fisher RA. The correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb. 1918;53:399–433.

Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

Beloumi D, Blasco A, Muelas R, Santacreu MA, García ML, Argente MJ. Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animals (Basel). 2020;10:1540.

Argente MJ, Calle EW, García ML, Blasco A. Correlated response in litter size components in rabbits selected for litter size variability. J Anim Breed Genet. 2017;134:505–11.

Calle EW, García ML, Blasco A, Argente MJ. Correlated response in early embryonic development in rabbits selected for litter size variability. World Rabbit Sci. 2017;25:323–7.

Yang Y, Chen M, Ventro G, Harmon CM. Amino acid residue L112 in the ACTH receptor plays a key role in ACTH or α-MSH selectivity. Mol Cell Endocrinol. 2019;482:11–7.

Hannibal KE, Bishop MD. Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther. 2014;94:1816–25.

Larange A, Cheroutre H. Retinoic acid and retinoic acid receptors as pleiotropic modulators of the immune system. Annu Rev Immunol. 2016;34:369–94.

Morgante F, Sørensen P, Sorensen DA, Maltecca C, Mackay TFC. Genetic architecture of micro-environmental plasticity in Drosophila melanogaster. Sci Rep. 2015;5:9785.

Collier RJ, Collier JL, Rhoads RP, Baumgard LH. Invited review: genes involved in the bovine heat stress response. J Dairy Sci. 2008;91:445–54.

Celi M, Vazzana M, Sanfratello MA, Parrinello N. Elevated cortisol modulates Hsp70 and Hsp90 gene expression and protein in sea bass head kidney and isolated leukocytes. Gen Comp Endocrinol. 2012;175:424–31.

Neuer A, Spandorfer SD, Giraldo P, Jeremias J, Dieterle S, Korneeva I, et al. Heat shock protein expression during gametogenesis and embryogenesis. Infect Dis Obstet Gynecol. 1999;7:10–6.

Ravikumar S, Muthuraman P. Cortisol effect on heat shock proteins in the C2C12 and 3T3-L1 cells. In Vitro Cell Dev Biol Anim. 2014;50:581–6.

Pires BV, Stafuzza NB, Lima SBGPNP, Negrão JA, Paz CCP. Differential expression of heat shock protein genes associated with heat stress in Nelore and Caracu beef cattle. Livest Sci. 2019;30:103839.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem