- -

Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.date.accessioned 2022-07-25T18:06:28Z
dc.date.available 2022-07-25T18:06:28Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 0040-1625 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184748
dc.description.abstract [EN] Digital technologies are transforming the industrial landscape and disrupting traditional business models. New business opportunities related to Industry 4.0 are emerging, so companies must adapt to the new environment. This work puts forward a multi-objective optimization algorithm to improve productivity and reduce the costs and energy consumption of autonomous industrial processes with the aim of achieving sustainable growth. The processes analyzed encompass an assembly line production with robotic cells and the subsequent material handling systems (MHS) using autonomous guided vehicles (AGVs) for indoor transport. An efficient algorithm has been implemented to integrate and minimize industrial robot arm working times, AGVs travel times and their trajectory, and the energy consumed in industrial processes while maximizing global business profits when manufacturing different products in an indoor industrial environment. Furthermore, this is carried out by considering the kinematics and dynamics of autonomous industrial processes and sustainable strategies to ensure compliance with government policies on environmental issues. These objectives are in line with the European Union (EU) guidelines on reducing greenhouse gas (GHG) emissions, renewable energy share, and improvements in energy efficiency for climate change mitigation and adaptation policies. Based on the difference in energy consumption between optimized and unoptimized industrial processes, the economic benefits can be quantified in terms of GHG emission quotas, volume of fuel consumed, and the indirect benefits with respect to improving corporate brand image. The methodology presented here has been successfully applied to several real case studies covering different manufacturing processes, robotic operations, and products. The results show that higher profits and sustainable growth are achieved when this methodology is used. It helps design Flexible Manufacturing Systems (FMS) and leads to shorter working times and higher energy efficiency and annual profits. In addition, Pareto frontiers show the trade-off between profits and product manufacturing times for different case studies. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Technological Forecasting and Social Change es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sustainable growth es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Pareto frontiers es_ES
dc.subject Production improvement es_ES
dc.subject Energy efficiency es_ES
dc.subject Climate change es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.techfore.2021.121115 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Rubio Montoya, FJ.; Llopis-Albert, C.; Valero Chuliá, FJ. (2021). Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth. Technological Forecasting and Social Change. 173:1-8. https://doi.org/10.1016/j.techfore.2021.121115 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.techfore.2021.121115 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 173 es_ES
dc.relation.pasarela S\445707 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem