Mostrar el registro completo del ítem
Ruiz-Dolz, R.; Alemany-Bordera, J.; Heras, S.; García-Fornes, A. (2021). Transformer-Based Models for Automatic Identification of Argument Relations: A Cross-Domain Evaluation. IEEE Intelligent Systems. 36(6):62-70. https://doi.org/10.1109/MIS.2021.3073993
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/184749
Título: | Transformer-Based Models for Automatic Identification of Argument Relations: A Cross-Domain Evaluation | |
Autor: | ||
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Argument mining is defined as the task of automatically identifying and extracting argumentative components (e.g., premises, claims, etc.) and detecting the existing relations among them (i.e., support, attack, rephrase, ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1109/MIS.2021.3073993 | |
Código del Proyecto: |
|
|
Descripción: |
|
|
Agradecimientos: |
This work was supported in part by the Spanish Government project under Grant TIN2017-89,156-R, in part by the FPI under grant BES-2015-074,498, and in part by the Valencian Government project under Grant PROMETEO/2018/002. ...[+]
|
|
Tipo: |
|