Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes-Selva, Vicent | es_ES |
dc.contributor.author | Ruiz-García, Vicente | es_ES |
dc.contributor.author | Tortajada, Salvador | es_ES |
dc.contributor.author | Benedí Ruiz, José Miguel | es_ES |
dc.contributor.author | Valdivieso, Bernardo | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M | es_ES |
dc.date.accessioned | 2022-07-25T18:06:38Z | |
dc.date.available | 2022-07-25T18:06:38Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.issn | 1460-4582 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/184755 | |
dc.description.abstract | [EN] Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to maximize the quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of the risk of 1-year mortality. The main aim of this work is to develop and validate machine-learning-based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Five machine-learning techniques were applied using a retrospective dataset. The evaluation was performed with five metrics computed by a resampling strategy: Accuracy, the area under the ROC curve, Specificity, Sensitivity, and the Balanced Error Rate. All models reported an AUC ROC from 0.857 to 0.91. Specifically, Gradient Boosting Classifier was the best model, producing an AUC ROC of 0.91, a sensitivity of 0.858, a specificity of 0.808, and a BER of 0.1687. Information from standard procedures at hospital admission combined with machine learning techniques produced models with competitive discriminative power. Our models reach the best results reported in the state of the art. These results demonstrate that they can be used as an accurate data-driven palliative care criteria inclusion. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the InAdvance project (H2020-SC1-BHC-2018-2020 No. 825750). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Health Informatics Journal | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Palliative care | es_ES |
dc.subject | Hospital admission data | es_ES |
dc.subject | Mortality forecast | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Design of 1-year mortality forecast at hospital admission: A machine learning approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1460458220987580 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825750/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Blanes-Selva, V.; Ruiz-García, V.; Tortajada, S.; Benedí Ruiz, JM.; Valdivieso, B.; Garcia-Gomez, JM. (2021). Design of 1-year mortality forecast at hospital admission: A machine learning approach. Health Informatics Journal. 27(1):1-13. https://doi.org/10.1177/1460458220987580 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1460458220987580 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33438484 | es_ES |
dc.relation.pasarela | S\425447 | es_ES |
dc.contributor.funder | European Commission | es_ES |
upv.costeAPC | 776 | es_ES |