- -

Design of 1-year mortality forecast at hospital admission: A machine learning approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of 1-year mortality forecast at hospital admission: A machine learning approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes-Selva, Vicent es_ES
dc.contributor.author Ruiz-García, Vicente es_ES
dc.contributor.author Tortajada, Salvador es_ES
dc.contributor.author Benedí Ruiz, José Miguel es_ES
dc.contributor.author Valdivieso, Bernardo es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.date.accessioned 2022-07-25T18:06:38Z
dc.date.available 2022-07-25T18:06:38Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 1460-4582 es_ES
dc.identifier.uri http://hdl.handle.net/10251/184755
dc.description.abstract [EN] Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to maximize the quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of the risk of 1-year mortality. The main aim of this work is to develop and validate machine-learning-based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Five machine-learning techniques were applied using a retrospective dataset. The evaluation was performed with five metrics computed by a resampling strategy: Accuracy, the area under the ROC curve, Specificity, Sensitivity, and the Balanced Error Rate. All models reported an AUC ROC from 0.857 to 0.91. Specifically, Gradient Boosting Classifier was the best model, producing an AUC ROC of 0.91, a sensitivity of 0.858, a specificity of 0.808, and a BER of 0.1687. Information from standard procedures at hospital admission combined with machine learning techniques produced models with competitive discriminative power. Our models reach the best results reported in the state of the art. These results demonstrate that they can be used as an accurate data-driven palliative care criteria inclusion. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the InAdvance project (H2020-SC1-BHC-2018-2020 No. 825750). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Health Informatics Journal es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Machine learning es_ES
dc.subject Palliative care es_ES
dc.subject Hospital admission data es_ES
dc.subject Mortality forecast es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Design of 1-year mortality forecast at hospital admission: A machine learning approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1460458220987580 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825750/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Blanes-Selva, V.; Ruiz-García, V.; Tortajada, S.; Benedí Ruiz, JM.; Valdivieso, B.; Garcia-Gomez, JM. (2021). Design of 1-year mortality forecast at hospital admission: A machine learning approach. Health Informatics Journal. 27(1):1-13. https://doi.org/10.1177/1460458220987580 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1460458220987580 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33438484 es_ES
dc.relation.pasarela S\425447 es_ES
dc.contributor.funder European Commission es_ES
upv.costeAPC 776 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem